Your browser doesn't support javascript.
loading
Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis
Silva, Clara Maria Guimarães; Silva, Déborah Nascimento dos Santos; Costa, Scarlathe Bezerra da; Almeida, Juliana Soares de Sá; Boente, Renata Ferreira; Teixeira, Felipe Lopes; Domingues, Regina Maria Cavalcanti Pilotto; Lobo, Leandro Araujo.
  • Silva, Clara Maria Guimarães; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Silva, Déborah Nascimento dos Santos; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Costa, Scarlathe Bezerra da; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Almeida, Juliana Soares de Sá; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Boente, Renata Ferreira; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Teixeira, Felipe Lopes; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Domingues, Regina Maria Cavalcanti Pilotto; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
  • Lobo, Leandro Araujo; Universidade Federal do Rio de Janeiro. Medical Microbiology Department. Rio de Janeiro. BR
Braz. j. microbiol ; 49(1): 200-206, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889189
ABSTRACT
ABSTRACT Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Repressor Proteins / Bacterial Proteins / Bacteroides fragilis / Bacteroides Infections / Anti-Bacterial Agents Limits: Humans Language: English Journal: Braz. j. microbiol Journal subject: Microbiology Year: 2018 Type: Article Affiliation country: Brazil Institution/Affiliation country: Universidade Federal do Rio de Janeiro/BR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Repressor Proteins / Bacterial Proteins / Bacteroides fragilis / Bacteroides Infections / Anti-Bacterial Agents Limits: Humans Language: English Journal: Braz. j. microbiol Journal subject: Microbiology Year: 2018 Type: Article Affiliation country: Brazil Institution/Affiliation country: Universidade Federal do Rio de Janeiro/BR