Your browser doesn't support javascript.
loading
A novel application of nano eggshell/titanium dioxide composite on occluding dentine tubules: an in vitro study
Onwubu, Stanley Chibuzor; Mdluli, Phumlane Selby; Singh, Shenuka; Tlapana, Tshepo.
Affiliation
  • Onwubu, Stanley Chibuzor; Durban University of Technology. Durban. ZA
  • Mdluli, Phumlane Selby; Durban University of Technology. Durban. ZA
  • Singh, Shenuka; University of KwaZulu-Natal. Durban. ZA
  • Tlapana, Tshepo; Durban University of Technology. Durban. ZA
Braz. oral res. (Online) ; 33: e016, 2019. tab, graf
Article in En | LILACS | ID: biblio-989478
Responsible library: BR1.1
ABSTRACT
Abstract To synthesize Nano eggshell-titanium-dioxide (EB@TiO2) biocomposite and to evaluate its effectiveness in occluding opened dentine tubules. EB@TiO2 was synthesized and characterized using X-ray diffraction (XRD), and Transmission Electron Microscope (TEM). Sixteen simulated bovine dentine discs were prepared and randomly assigned into four groups according to the following treatment (n = 4) Group 1 No treatment; Group 2 eggshell powder; Group 3 EB@TiO2; Group 4 Sensodyne. These were then agitated in a solution of 1g powder and 40mL water for 3hours. Thereafter, each dentine discs from the respective groups were post-treated for 5 min with 2wt% citric acid to test their acid resistant characteristics. Scanning Electron Microscope (SEM) was used to observe the effectiveness of occluded dentine pre-and post-treatment. The cytotoxicity of the synthesized EB@TiO2 was tested using NIH 3T3 assay. ANOVA was used to evaluate the mean values of the occluded area ratio and the data of MTS assay. This was followed by a multi-comparison test with Bonferroni correction (α = .05). The XRD confirmed that EB@TiO2 was successfully modified through ball-milling. The TEM revealed the presence of both spherical and irregular particle shape powders. The SEM result showed that EB@TiO2 could effectively occlude open dentine tubules. Equally, the result demonstrated that EB@TiO2 exhibited the highest acid resistant stability post-treatment. NIH 3T3 assay identified that EB@TiO2 had little effect on the NIH 3T3 cell line even at the highest concentration of 100µg/ml. This study suggests that the application of EB@TiO2 effectively occluded dentine tubules and the occlusion showed a high acid resistant stability.
Subject(s)
Key words

Full text: 1 Index: LILACS Main subject: Phosphates / Titanium / Dentin Permeability / Dentin Sensitivity / Egg Shell / Nanocomposites / Dentin Desensitizing Agents / Fluorides / Nitrates Type of study: Prognostic_studies Limits: Animals Language: En Journal: Braz. oral res. (Online) Journal subject: ODONTOLOGIA Year: 2019 Type: Article

Full text: 1 Index: LILACS Main subject: Phosphates / Titanium / Dentin Permeability / Dentin Sensitivity / Egg Shell / Nanocomposites / Dentin Desensitizing Agents / Fluorides / Nitrates Type of study: Prognostic_studies Limits: Animals Language: En Journal: Braz. oral res. (Online) Journal subject: ODONTOLOGIA Year: 2019 Type: Article