Your browser doesn't support javascript.
loading
Effect of trolox C on cardiac contratucture induced by hydrogen peroxide
Braz. j. med. biol. res ; 30(11): 1337-42, Nov. 1997. ilus, tab, graf
Article in English | LILACS | ID: lil-201680
RESUMO
Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350g) were perfused at 31°C with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode 5.9 + 3.2; H2O2 60.5 + 13.9 percent of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode 3,199 + 259; H2O2 5,304 + 133 cps mg protein(-1) 60 min(-1), oxygen uptake (Tyrode 0.44 + 0.1; H2O2 3.2 + 0.8 nmol min(-1) mg protein(-1) and malonaldehyde (TBARS) foramtion (Tyrode 0.12 + 0; H2O2 0.37 + 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (Chemiluminescence 4,098 + 531), oxygen uptake (0.51 + 0) and TBARS (0.13 + 0) bud did not prevent the H2O2-induced contractures (33.3 + 16 percent). ATP (Tyrode 2.84 + 0; H2O2 0.57 + 0) and glycogen levels (Tyrode 0.46 + 0; H2O22 0.26 + 0) were reduced by H2O2. Trolox did not prevent these effects (ATP 0.84 + 0 and glycogen 0.27 + 0). Trolox C is known to be more effective than alpha-tocopherol or gamma-tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contracture.
Subject(s)
Full text: Available Index: LILACS (Americas) Main subject: Vitamin E / Hydrogen Peroxide / Myocardial Contraction / Antioxidants Limits: Animals Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 1997 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: LILACS (Americas) Main subject: Vitamin E / Hydrogen Peroxide / Myocardial Contraction / Antioxidants Limits: Animals Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 1997 Type: Article