Your browser doesn't support javascript.
loading
A bioinformatics analysis of alternative exon usage in human genes coding for extracellular matrix proteins
Sakabe, Noboru Jo; Vibranovski, Maria Dulcetti; Souza, Sandro José de.
  • Sakabe, Noboru Jo; Ludwig Institute for Cancer Research. São Paulo. BR
  • Vibranovski, Maria Dulcetti; Ludwig Institute for Cancer Research. São Paulo. BR
  • Souza, Sandro José de; Ludwig Institute for Cancer Research. São Paulo. BR
Genet. mol. res. (Online) ; 3(4): 532-544, 2004. tab, graf
Article in English | LILACS | ID: lil-410897
RESUMO
Alternative splicing increases protein diversity through the generation of different mRNA molecules from the same gene. Although alternative splicing seems to be a widespread phenomenon in the human transcriptome, it is possible that different subgroups of genes present different patterns, related to their biological roles. Analysis of a subgroup may enhance common features of its members that would otherwise disappear amidst a heterogeneous population. Extracellular matrix (ECM) proteins are a good set for such analyses since they are structurally and functionally related. This family of proteins is involved in a large variety of functions, probably achieved by the combinatorial use of protein domains through exon shuffling events. To determine if ECM genes have a different pattern of alternative splicing, we compared clusters of expressed sequences of ECM to all other genes regarding features related to the most frequent type of alternative splicing, alternative exon usage (AEU), such as the number of alternative exon-intron structures per cluster, the number of AEU events per exon-intron structure, the number of exons per event, among others. Although we did not find many differences between the two sets, we observed a higher frequency of AEU events involving entire protein domains in the ECM set, a feature that could be associated with their multi-domain nature. As other subgroups or even the ECM set in different tissues could present distinct patterns of AEU, it may be premature to conclude that alternative splicing is homogeneous among groups of related genes.
Subject(s)
Full text: Available Index: LILACS (Americas) Main subject: Exons / Extracellular Matrix Proteins / Alternative Splicing / Computational Biology Limits: Humans Language: English Journal: Genet. mol. res. (Online) Journal subject: Molecular Biology / Genetics Year: 2004 Type: Article Affiliation country: Brazil Institution/Affiliation country: Ludwig Institute for Cancer Research/BR

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: LILACS (Americas) Main subject: Exons / Extracellular Matrix Proteins / Alternative Splicing / Computational Biology Limits: Humans Language: English Journal: Genet. mol. res. (Online) Journal subject: Molecular Biology / Genetics Year: 2004 Type: Article Affiliation country: Brazil Institution/Affiliation country: Ludwig Institute for Cancer Research/BR