Your browser doesn't support javascript.
loading
Differential metabolism of Mycoplasma species as revealed by their genomes
Arraes, Fabricio B. M; Carvalho, Maria José A. de; Maranhão, Andrea Q; Brígido, Marcelo M; Pedrosa, Fábio O; Felipe, Maria Sueli S.
  • Arraes, Fabricio B. M; Universidade de Brasília. Instituto de Ciências Biológicas. Departamento de Biologia Celular. Laboratório de Biologia Molecular. Brasília. BR
  • Carvalho, Maria José A. de; Universidade de Brasília. Instituto de Ciências Biológicas. Departamento de Biologia Celular. Laboratório de Biologia Molecular. Brasília. BR
  • Maranhão, Andrea Q; Universidade de Brasília. Instituto de Ciências Biológicas. Departamento de Biologia Celular. Laboratório de Biologia Molecular. Brasília. BR
  • Brígido, Marcelo M; Universidade de Brasília. Instituto de Ciências Biológicas. Departamento de Biologia Celular. Laboratório de Biologia Molecular. Brasília. BR
  • Pedrosa, Fábio O; Universidade Federal do Paraná. Departamento de Bioquímica e Biologia Molecular. Curitiba. BR
  • Felipe, Maria Sueli S; Universidade de Brasília. Instituto de Ciências Biológicas. Departamento de Biologia Celular. Laboratório de Biologia Molecular. Brasília. BR
Genet. mol. biol ; 30(1,suppl): 182-189, 2007. tab
Article in English | LILACS | ID: lil-450433
ABSTRACT
The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall), has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.
Full text: Available Index: LILACS (Americas) Language: English Journal: Genet. mol. biol Journal subject: Genetics Year: 2007 Type: Article Affiliation country: Brazil Institution/Affiliation country: Universidade Federal do Paraná/BR / Universidade de Brasília/BR

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: LILACS (Americas) Language: English Journal: Genet. mol. biol Journal subject: Genetics Year: 2007 Type: Article Affiliation country: Brazil Institution/Affiliation country: Universidade Federal do Paraná/BR / Universidade de Brasília/BR