Your browser doesn't support javascript.
loading
Hepatocytes, rather than leukocytes reverse DNA damage in vivo induced by whole body y-irradiation of mice, as shown by the alkaline comet assay
Pincheira, Juana; Carrera, Pilar; Marcelain, Katherine; De la Torre, Consuelo.
  • Pincheira, Juana; Universidad de Chile. Facultad de Medicina. ICBM. Programa de Genética Humana. Santiago. CL
  • Carrera, Pilar; Universidad Autónoma de Madrid. Departamento de Biología. Madrid. ES
  • Marcelain, Katherine; Universidad de Chile. Facultad de Medicina. ICBM. Programa de Genética Humana. Santiago. CL
  • De la Torre, Consuelo; CSIC. Centro de Investigaciones Biológicas. Madrid. ES
Biol. Res ; 41(2): 217-225, 2008. graf
Article in English | LILACS | ID: lil-495756
ABSTRACT
DNA damage repair was assessed in quiescent (G0) leukocytes and in hepatocytes of mice, after 1 and 2 hours recovery from a single whole body y-irradiation with 0.5, 1 or 2 Gy. Evaluation of single-strand breaks (SSB) and alkali-labile sites together were carried out by a single-cell electrophoresis at pH>13.0 (alkaline comet assay). In non-irradiated (control) mice, the constitutive, endogenous DNA damage (basal) was around 1.5 times higher in leukocytes than in hepatocytes. Irradiation immediately increased SSB frequency in both cell types, in a dose-dependent manner. Two sequential phases took place during the in vivo repair of the radio-induced DNA lesions. The earliest one, present in both hepatocytes and leukocytes, further increased the SSB frequency, making evident the processing of some primary lesions in DNA bases into the SSB repair intermediates. In a second phase, SSB frequency decreased because of their removal. In hepatocytes, such a frequency regressed to the constitutive basal level after 2 hours recovery from either 0.5 orí Gy. On the other hand, the SSB repair phase was specifically abrogated in leukocytes, at the doses and recovery times analyzed. Thus, the efficiency of in vivo repair of radio-induced DNA damage in dormant cells (lymphocytes) is quite different from that in hepatocytes whose low proliferation activity accounts only for cell renewal.
Subject(s)

Full text: Available Index: LILACS (Americas) Main subject: DNA Damage / Whole-Body Irradiation / Hepatocytes / DNA Repair / Gamma Rays / Leukocytes Limits: Animals Language: English Journal: Biol. Res Journal subject: Biology Year: 2008 Type: Article / Project document Affiliation country: Chile / Spain Institution/Affiliation country: CSIC/ES / Universidad Autónoma de Madrid/ES / Universidad de Chile/CL

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: LILACS (Americas) Main subject: DNA Damage / Whole-Body Irradiation / Hepatocytes / DNA Repair / Gamma Rays / Leukocytes Limits: Animals Language: English Journal: Biol. Res Journal subject: Biology Year: 2008 Type: Article / Project document Affiliation country: Chile / Spain Institution/Affiliation country: CSIC/ES / Universidad Autónoma de Madrid/ES / Universidad de Chile/CL