Your browser doesn't support javascript.
loading
Genotypic variation in morphology and freezing resistance of Eucalyptus globulus seedlings subjected to drought hardening in nursery / Variación genotípica en la morfología y resistencia a la congelación del Eucalyptus globulus a la sequía sometido al endurecimiento en vivero
Coopman, Rafael E; Jara, Jorge C; Escobar, Rene; Corcuera, Luis J; Bravo, Leon A.
  • Coopman, Rafael E; Universidad Austral de Chile. Facultad de Ciencias Forestales y Recursos Naturales. Instituto de Silvicultura. Valdivia. CL
  • Jara, Jorge C; Universidad de Concepción. Facultad de Ingeniería Civil Agrícola. Departamento de Recursos Hídricos. Concepción. CL
  • Escobar, Rene; Universidad de Concepción. Facultad de Ciencias Forestales y Recursos Naturales. Departamento de Silvicultura. Concepción. CL
  • Corcuera, Luis J; Universidad de Concepción. Facultad de Ciencias Naturales y Oceanográficas. Departamento de Botánica. Concepción. CL
  • Bravo, Leon A; Universidad de Concepción. Facultad de Ciencias Naturales y Oceanográficas. Departamento de Botßnica. Concepción. CL
Electron. j. biotechnol ; 13(1): 5-6, Jan. 2010. ilus, tab
Article in English | LILACS | ID: lil-559588
ABSTRACT
Eucalyptus globulus Labill is one of the most planted species in Chile, because of its fast growth and superior pulp qualities. Nevertheless, the incidence of drought and frost damage immediately after planting is frequent. The purpose of this work was to study the effect of drought hardening on frost resistance and on variations in morphological traits that may increase drought resistance at nursery phase in four genotypes of E. globulus Labill. Drought hardening treatments consisted in induced water stress by watering restriction, until pre-dawn stem xylem water potentials (Psi pd) reached -0.2, -1.8 and -2.6 MPa. Two water stress-rewatering cycles were applied during 54 days of hardening. Plant and root biomasses were affected by the interaction of drought hardening and genotypes. The rest of morphological and alometrical traits were affected independently by drought or genotype. Plant height, leaf area, specific leaf area (SLA), stem, and leaf biomasses decreased with drought hardening, while collar diameter was not affected. Genotypes responded differentially to drought hardening in plant height, leaf area, SLA, and stem, and leaf biomasses. Ice nucleation temperature (INT), and freezing temperatures (FRT), and 50 percent freezing damage index of leaves (LT50) were affected by the interaction between drought hardening and genotypes. EG-13, EG-23 and EG-22 genotypes became freezing tolerant with drought hardening (-2.6 MPa). Additionally, EG-14 genotype increased its freezing resistance at -1.8 MPa. Therefore, freezing resistance levels and mechanism depend on genotype and drought hardening treatment. The success in tree breeding by genetic selection should be facilitated by improved understanding of the physiology of stress resistance development and survival during water supply limitations. The knowledge of morphological and freezing resistance dependency on the interaction between genotype and drought hardening may be useful...
Subject(s)

Full text: Available Index: LILACS (Americas) Main subject: Plant Roots / Dehydration / Eucalyptus Language: English Journal: Electron. j. biotechnol Journal subject: Biotechnology Year: 2010 Type: Article Affiliation country: Chile Institution/Affiliation country: Universidad Austral de Chile/CL / Universidad de Concepción/CL

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: LILACS (Americas) Main subject: Plant Roots / Dehydration / Eucalyptus Language: English Journal: Electron. j. biotechnol Journal subject: Biotechnology Year: 2010 Type: Article Affiliation country: Chile Institution/Affiliation country: Universidad Austral de Chile/CL / Universidad de Concepción/CL