Your browser doesn't support javascript.
loading
Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease
Lucchesi, Amanda Natália; Freitas, Natália Tavares de; Cassettari, Lucas Langoni; Marques, Sílvio Fernando Guideti; Spadella, César Tadeu.
  • Lucchesi, Amanda Natália; Methodist University of Piracicaba. Sao Paulo. BR
  • Freitas, Natália Tavares de; Methodist University of Piracicaba. Sao Paulo. BR
  • Cassettari, Lucas Langoni; Methodist University of Piracicaba. Sao Paulo. BR
  • Marques, Sílvio Fernando Guideti; Methodist University of Piracicaba. Sao Paulo. BR
  • Spadella, César Tadeu; Methodist University of Piracicaba. Sao Paulo. BR
Acta cir. bras ; 28(7): 502-508, July 2013. graf, tab
Article in English | LILACS | ID: lil-679082
ABSTRACT

PURPOSE:

To investigate whether Diabetes mellitus chemically induced by alloxan is capable of changing, in the long term, the oxidative balance in the liver tissue of rats.

METHODS:

Sixty male Wistar rats, weighing 250-280g, were randomly distributed into two experimental groups NG - 30 non-diabetic control rats; DG - 30 alloxan- induced diabetic rats without any treatment for the disease. Each group was further divided into three subgroups containing ten rats each, which were sacrificed after one, three and six months of follow-up, respectively. Blood glucose, urinary glucose, glycosylated hemoglobin and insulin were determined in the plasma of all animals at the beginning of the experiment and prior to all sacrifice periods. The concentrations of lipid hydroperoxides (HP) and the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were also measured in the liver tissue of all animals.

RESULTS:

Rats from the DG group showed high levels of blood glucose, urinary glucose, and glycosylated hemoglobin, with significantly lower plasma insulin levels than those observed in NG rats (p<0.001). Diabetic animals also showed increased concentration of HP free radicals in the liver tissue as compared to those shown by NG animals after one, three and six months of follow-up. In contrast, the antioxidant activity of the enzymes SOD, CAT and GSH-Px was significantly reduced in all follow-up periods (p<0.01).

CONCLUSIONS:

Diabetes determines oxidative stress in the liver, which is characterized by increased concentration of reactive oxygen species (ROS) in tissue and significant reduction in their antioxidant defenses. Such oxidative unbalance in the liver cells may play a relevant role in the genesis of the diabetic chronic liver disease, including the non-alcoholic fatty liver disease and its occasional progression to steatohepatitis and cirrhosis.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Oxidative Stress / Diabetes Mellitus, Experimental / Liver / Liver Diseases Type of study: Etiology study Limits: Animals Language: English Journal: Acta cir. bras Journal subject: General Surgery / Procedimentos Cir£rgicos Operat¢rios Year: 2013 Type: Article Affiliation country: Brazil Institution/Affiliation country: Methodist University of Piracicaba/BR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Oxidative Stress / Diabetes Mellitus, Experimental / Liver / Liver Diseases Type of study: Etiology study Limits: Animals Language: English Journal: Acta cir. bras Journal subject: General Surgery / Procedimentos Cir£rgicos Operat¢rios Year: 2013 Type: Article Affiliation country: Brazil Institution/Affiliation country: Methodist University of Piracicaba/BR