Your browser doesn't support javascript.
loading
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors
Negrão, João Francisco Ribeiro; Araujo, Guilherme Augusto Limeira; Costa Júnior, Carlos Tavares da; Souza, Daniel Cardoso de.
  • Negrão, João Francisco Ribeiro; Universidade Federal do Pará. Instituto de Tecnologia. Belém. BR
  • Araujo, Guilherme Augusto Limeira; Universidade Federal do Pará. Instituto de Tecnologia. Belém. BR
  • Costa Júnior, Carlos Tavares da; Universidade Federal do Pará. Instituto de Tecnologia. Belém. BR
  • Souza, Daniel Cardoso de; Universidade Federal do Pará. Instituto de Tecnologia. Belém. BR
Rev. bras. eng. biomed ; 29(3): 269-277, set. 2013. ilus, tab
Article in English | LILACS | ID: lil-690215
ABSTRACT

INTRODUCTION:

Electromagnetic interference caused by electric power lines adversely affects the signals of electronic instruments, especially those with low amplitude levels. This type of interference is known as common-mode interference. There are many methods and architectures used to minimize the influence of this kind of interference on electronic instruments, the most common of which is the use of band-reject filters. This paper presents the analysis, development, prototype and test of a new reconfigurable filter architecture for biomedical instruments, aiming to reduce the common-mode interference and preserve the useful signal components in the same frequency range as that of the noise, using the technique of dynamic impedance balancing.

METHODS:

The circuit blocks were mathematically modeled and the overall closed-loop transfer function was derived. Then the project was described and simulated in the VHDL_AMS language and also in an electronics simulation software, using discrete component blocks, with and without feedback. After theoretical analysis and simulation results, a prototype circuit was built and tested using as input a signal obtained from ECG electrodes.

RESULTS:

The results from the experimental circuit matched those from simulation a 97.6% noise reduction was obtained in simulations using a sinusoidal signal, and an 86.66% reduction was achieved using ECG electrodes in experimental tests. In both cases, the useful signal was preserved.

CONCLUSION:

The method and its architecture can be applied to attenuate interferences which occur in the same frequency band as that of the useful signal components, while preserving these signals.


Full text: Available Index: LILACS (Americas) Language: English Journal: Rev. bras. eng. biomed Journal subject: Biomedical Engineering Year: 2013 Type: Article Affiliation country: Brazil Institution/Affiliation country: Universidade Federal do Pará/BR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Language: English Journal: Rev. bras. eng. biomed Journal subject: Biomedical Engineering Year: 2013 Type: Article Affiliation country: Brazil Institution/Affiliation country: Universidade Federal do Pará/BR