Your browser doesn't support javascript.
loading
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats
Sertié, R.A.L.; Andreotti, S.; Proença, A.R.G.; Campaña, A.B.; Lima, F.B..
  • Sertié, R.A.L.; Universidade de São Paulo. Departamento de Fisiologia e Biofísica. Instituto de Ciências Biomédicas. São Paulo. BR
  • Andreotti, S.; Universidade de São Paulo. Departamento de Fisiologia e Biofísica. Instituto de Ciências Biomédicas. São Paulo. BR
  • Proença, A.R.G.; Universidade de São Paulo. Departamento de Fisiologia e Biofísica. Instituto de Ciências Biomédicas. São Paulo. BR
  • Campaña, A.B.; Universidade de São Paulo. Departamento de Fisiologia e Biofísica. Instituto de Ciências Biomédicas. São Paulo. BR
  • Lima, F.B.; Universidade de São Paulo. Departamento de Fisiologia e Biofísica. Instituto de Ciências Biomédicas. São Paulo. BR
Braz. j. med. biol. res ; 48(7): 650-653, 07/2015. graf
Article in English | LILACS | ID: lil-751343
ABSTRACT
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10) group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Parkinson Disease, Secondary / Pesticides / Occupational Exposure / Agricultural Workers&apos; Diseases Type of study: Etiology study / Observational study / Prognostic study / Risk factors Limits: Adult / Aged / Aged80 / Female / Humans / Male Country/Region as subject: North America Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 2015 Type: Article / Project document Affiliation country: Brazil Institution/Affiliation country: Universidade de São Paulo/BR

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Parkinson Disease, Secondary / Pesticides / Occupational Exposure / Agricultural Workers&apos; Diseases Type of study: Etiology study / Observational study / Prognostic study / Risk factors Limits: Adult / Aged / Aged80 / Female / Humans / Male Country/Region as subject: North America Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 2015 Type: Article / Project document Affiliation country: Brazil Institution/Affiliation country: Universidade de São Paulo/BR