Your browser doesn't support javascript.
loading
Metabolic variation in rice cultivars of contrasting salt tolerance and its improvement by zinc in sodic soil.
J Environ Biol ; 2006 Jul; 27(3): 557-60
Article in English | IMSEAR | ID: sea-113689
ABSTRACT
The severity of Zn deficiency increased with increase in soil exchangeable sodium percentage (ESP) with salt sensitive variety M1-48 scoring 6 at ESP 62 as against only score 3 by salt tolerant variety Pokkali under similar soil conditions. Strikingly, zinc contents were much higher in salt tolerant variety than in salt sensitive one. Zinc application increased zinc concentration in the roots by a factor of 2.85 to 3.87 in Pokkali whereas it rose from 2.37 to 4.35 times in M1-48 depending upon ESP but in the leaves it registered increase of 1.5 to 1.8 times only. In general, the concentrations of reducing sugar were less (about 2.2%) than that of non-reducing (about 3.8%) in both the varieties under normal soil conditions. However, the concentration of reducing sugar doubled (4.2-4.4%) at the highest ESP 62, whereas the concentration of non-reducing sugar though increased (4.1 to 5.1%) but not as vigorously as reducing one. Zinc application reduced the concentration of reducing sugar but not that of non-reducing at similar ESP values. In Pokkali, the concentrations of total sugar increased from 6% at ESP 20 to 9.34% at ESP 62, whereas it registered enhancements of 5.98 to 8.6% in M1-48 under similar conditions. The nitrate reductase (NR) activity decreased with increase in soil sodicity however, the varietal differences in NR activity were wider under Zn-stress than under conditions of applied zinc with Pokkali registering higher NR activities. Carbonic anhydrase activities were higher in salt tolerant variety. Inhibition in carbonic anhydrase activity amounted to 23 and 45% in salt-sensitive variely M1-48 whereas only 19 and 33% in salt-tolerant variety Pokkali at ESP 41 and 62, respectively. The effects of zinc application at higher soil sodicity were more obvious in salt-sensitive variety than in salt-tolerant one. The findings suggest that the tolerance to Zn stress runs parallel to salt tolerance abilities of rice varieties.
Subject(s)
Full text: Available Index: IMSEAR (South-East Asia) Main subject: Oryza / Sodium / Soil / Zinc / Adaptation, Physiological Language: English Journal: J Environ Biol Year: 2006 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: IMSEAR (South-East Asia) Main subject: Oryza / Sodium / Soil / Zinc / Adaptation, Physiological Language: English Journal: J Environ Biol Year: 2006 Type: Article