Your browser doesn't support javascript.
loading
Homocysteine, Hydrogen sulfide (H2S) and NMDA-Receptor in Heart Failure.
Indian J Biochem Biophys ; 2009 Dec; 46(6): 441-446
Article in English | IMSEAR | ID: sea-135227
ABSTRACT
Mitochondrial mechanism of oxidative stress and matrix metalloproteinase (MMP) activation was unclear. Our recent data suggested that MMPs are localized to mitochondria and activated by peroxynitrite, which causes cardiovascular remodeling and failure. Recently, we have demonstrated that elevated levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) increase oxidative stress in the mitochondria. Although HHcy causes heart failure, interestingly, it is becoming very clear that Hcy can generate hydrogen sulfide (H2S), if the enzymes cystathionine β-synthase (CBS) and cystathionine -lyase (CGL) are present. H2S is a strong anti-oxidant and vasorelaxing agent. Paradoxically, it is interesting that Hcy, a precursor of H2S can be cardioprotective. The CGL is ubiquitous, while the CBS is not present in the vascular tissues. Therefore, under normal condition, only half of Hcy can be converted to H2S. However, there is strong potential for gene therapy of CBS to vascular tissue that can mitigate the detrimental effects of Hcy by converting it to H2S. This scenario is possible, if the activities of both the enzymes (CBS and CGL) are increased in tissues by gene therapy.
Subject(s)

Full text: Available Index: IMSEAR (South-East Asia) Main subject: Humans / Gene Deletion / Receptors, N-Methyl-D-Aspartate / Heart Failure / Homocysteine / Hydrogen Sulfide / Animals / Myocardial Contraction Language: English Journal: Indian J Biochem Biophys Year: 2009 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: IMSEAR (South-East Asia) Main subject: Humans / Gene Deletion / Receptors, N-Methyl-D-Aspartate / Heart Failure / Homocysteine / Hydrogen Sulfide / Animals / Myocardial Contraction Language: English Journal: Indian J Biochem Biophys Year: 2009 Type: Article