Your browser doesn't support javascript.
loading
Effect of conventional and microwave glazing on surface roughness of metal ceramics: An atomic force microscopy analysis
Article | IMSEAR | ID: sea-192077
ABSTRACT
This study investigated and compared the surface roughness achieved by glazing porcelain samples in a conventional and a microwave oven. Materials and

Methods:

Two commercial brands of metal ceramics were used, VITA VMK MASTER and IPS CLASSIC. Sixty samples were fabricated, 30 for each type of ceramic. The samples were sintered in the conventional oven and hand-polished to remove any irregularities. Samples (n = 10) from each type of ceramic were further divided into three groups as follows hand-polished (Group A), conventional oven glazed (Group B), and microwave glazed (Group C). Each specimen was evaluated for surface roughness by atomic force microscope. Data were statistically analyzed using two-way analysis of variance (ANOVA) and Tukey's post hoc test (a = 0.05).

Results:

Two-way ANOVA indicated a highly significant difference in surface roughness based on the type of glazing (P < 0.001), there was a significant difference based on the metal ceramics (P = 0.002). There was also a significant interaction between the type of glazing and metal ceramics (P = 0.009). The images obtained from the atomic force microscope corroborated the measured values.

Conclusions:

All the results indicate that microwave glazing can be a feasible option for glazing porcelain specimens. It was concluded that surface topography is influenced by surface treatment and microwave glazed ceramic is superior to conventional oven glazed ceramic and hand-polishing showed greater surface roughness when compared to glazing. IPS CLASSIC ceramic showed relatively smooth surface when compared to VITA VMK MASTER irrespective of the surface treatment.

Full text: Available Index: IMSEAR (South-East Asia) Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: IMSEAR (South-East Asia) Year: 2018 Type: Article