Your browser doesn't support javascript.
loading
Effect of TRPV4-Nox2 complex on aortic vasodilatory function of obese mice / 中国药理学通报
Chinese Pharmacological Bulletin ; (12): 719-725, 2022.
Article in Chinese | WPRIM | ID: wpr-1014099
ABSTRACT
Aim To investigate the effects of TRPV4-Nox2 complex on ROS production and aortic vasodilatory function in mice fed with high-fat diet.Methods Male C57 BL/6J mice and TRPV4 KO mice were randomly divided into seven groups, with 10 mice in each group normal diet group(ND), high-fat diet group(HFD), TRPV4 KO mice fed with high-fat diet group(TRPV4 KO-HFD), HFD+AAV-Flt1-Vector/Nox2 ▵3 group, TRPV4 KO-HFD+AAV-Flt1 -Vector/Nox2 ▵3 group.Body weight and blood pressure were recorded.14 weeks later primary aortic endothelial cells were isolated for CM-H2DCFDA staining and immuno-FRET assay, and aortic rings were isolated for vascular tone assay.Results ① Obesity significantly increased ROS production, triggered vasodilatory dysfunction and increased the strength of physical coupling between TRPV4-Nox2 complex(P<0.05); ② Decreasing the physical association of TRPV4-Nox2 complex could help reduce obesity-induced increased ROS production and vasodilatory dysfunction(P<0.05); ③ Entrectinib had no effect on the expression and function of TRPV4 and Nox2, but only decreased the physical association of the TRPV4-Nox2, which in turn improved obesity-induced oxidative stress and restored vasodilatory function.Conclusions Reducing the physical association of TRPV4 and Nox2 through Entrectinib can help reduce obesity-induced increase in ROS production and improve vasodilatory function of obese mice.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Pharmacological Bulletin Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Pharmacological Bulletin Year: 2022 Type: Article