Your browser doesn't support javascript.
loading
Regulation Mechanism of m6A Methylation Modification in the Development of Prostate Cancer / 中国生物化学与分子生物学报
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1047-1058, 2023.
Article in Chinese | WPRIM | ID: wpr-1015598
ABSTRACT
N6-adenosine methylation, a form of methylation of the adenosine N6 site, is often found in eukaryotic mRNA and is one of the most common forms of internal RNA modification. Studies have shown that m6A affects cellular biological processes by regulating gene expression; also the regulators of m6A play a key role in the occurrence and development of various cancers. Prostate Cancer (PCa) is a common malignant tumor in men, and the risk of the disease in men over 60 years of age is increasing year by year. With the aging population, the number of PCa can be expected to continue to rise. In recent years, the role of m6A in tumorigenesis has received widespread attention, but studies on m6A methylation modification in PCa are still limited; therefore, it is particularly important to further explore the relationship between m6A methylation and PCa. In this paper, we review the recent research progress on the role, mechanism, and application of m6A methylation modification in PCa, especially the detailed review of the mechanism of METTL3, FTO, YTHDF2, three classical m6A-related regulatory proteins in PCa; and the potential application of m6A in advanced PCa (e. g., destructive resistant prostate cancer, bone metastatic prostate cancer). From the perspective of methylation modification, this paper may provide some clues to find effective therapeutic strategies for early diagnosis, treatment, and prognosis of PCa, and more theoretical references to achieve individualized treatment.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Biochemistry and Molecular Biology Year: 2023 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Biochemistry and Molecular Biology Year: 2023 Type: Article