Your browser doesn't support javascript.
loading
Two-dimensional Nanomaterials against β-Amyloid in the Treatment of Alzheimer’s Disease / 中国生物化学与分子生物学报
Chinese Journal of Biochemistry and Molecular Biology ; (12): 595-602, 2021.
Article in Chinese | WPRIM | ID: wpr-1015939
ABSTRACT
Alzheimer’s disease (AD) is a prevalent progressive neurodegenerative disorder among the elderly. In the scientific community, the β-amyloid (Aβ) hypothesis is currently a widely-accepted model for AD pathogenesis. Removing Aβ, inhibiting Aβ aggregation and depolymerizing Aβ fibrils are proposed to provide useful strategies for the treatment of AD. However, most current drugs used for anti-Aβ therapy usually have inherent drawbacks that may limit their clinical applications. With the rise of nanotechnology nowadays, the application of two-dimensional nanomaterials in medicine has rapidly attracted much attention from researchers. Two-dimensional nanomaterials not only have excellent physical and chemical properties, as well as good biocompatibility, but also can easily cross either the cell membrane or blood-brain barrier. Recently, it has been found that many two-dimensional nanomaterials can inhibit Aβ aggregation or depolymerize Aβ fibrils by intermolecular interaction, near-infrared photothermal effect, photocatalytic oxidation, chelation of copper ions, drug delivery and other mechanisms, implying its great potential in treating AD. This review will focus on the research of graphene and graphene-like two-dimensional nanomaterials such as molybdenum disulfide, graphitic carbon nitride, and black phosphorus used for anti-Aβ therapy in the treatment of AD.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Biochemistry and Molecular Biology Year: 2021 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Biochemistry and Molecular Biology Year: 2021 Type: Article