Construction and validation of a model for predicting the risk of in-hospital cardiac arrest in emergency rooms / 中华急诊医学杂志
Chinese Journal of Emergency Medicine
; (12): 20-27, 2024.
Article
in Zh
| WPRIM
| ID: wpr-1018942
Responsible library:
WPRO
ABSTRACT
Objective:The predictive model of cardiac arrest in the emergency room was constructed and validated based on Logistic regression.Methods:This study was a retrospective cohort study. Patients admitted to the emergency room of the First Affiliated Hospital of Xinjiang Medical University from January 2020 to July 2021 were included. The general information, vital signs, clinical symptoms, and laboratory examination results of the patients were collected, and the outcome was cardiac arrest within 24 hours. The patients were randomly divided into modeling and validation group at a ratio of 7:3. LASSO regression and multivariable logistic regression were used to select predictive factors and construct a prediction model for cardiac arrest in the emergency room. The value of the prediction model was evaluated using the area under the receiver operator characteristic curve (AUC), calibration curve, and decision curve analysis (DCA).Results:A total of 784 emergency room patients were included in the study, 384 patients occurred cardiac arrest. The 10 variables were ultimately selected to construct a risk prediction model for cardiac arrest: Logit( P)= -4.503+2.159×modified early warning score (MEWS score)+2.095×chest pain+1.670×abdominal pain+ 2.021×hematemesis+2.015×cold extremities+5.521×endotracheal intubation+0.388×venous blood lactate-0.100×albumin+0.768×K ++0.001×D-dimer. The AUC of the model group was 0.984 (95% CI: 0.976-0.993) and that of the validation group was 0.972 (95% CI: 0.951-0.993). This prediction model demonstrates good calibration, discrimination, and clinical applicability. Conclusions:Based on the MEWS score, chest pain, abdominal pain, hematemesis, cold extremities, tracheal intubation, venous blood lactate, albumin, K +, and D-dimer, a predictive model for cardiac arrest in the in-hospital emergency room was constructed to predict the probability of cardiac arrest in emergency room patients and adjust the treatment strategy in time.
Full text:
1
Index:
WPRIM
Language:
Zh
Journal:
Chinese Journal of Emergency Medicine
Year:
2024
Type:
Article