Biomechanical optimization scheme of artificial ankle inserts based on porous structure design / 中国组织工程研究
Chinese Journal of Tissue Engineering Research
; (53): 4817-4824, 2024.
Article
in Zh
| WPRIM
| ID: wpr-1021925
Responsible library:
WPRO
ABSTRACT
BACKGROUND:Prosthesis loosening and wear are still the main problems in the failure of total ankle replacement,which are closely related to the micro-motion of the implant-bone interface,the contact stress of the articular surface and joint motion.The design of artificial joint components,including insert and tibial/talar stem prosthesis,is a key factor affecting the force,motion,and micromotion of the contact interface of the ankle joint.The development of new inserts is of great significance to improve the survival rate of artificial ankle joints. OBJECTIVE:The finite element model of the total ankle replacement model was constructed to detect the biomechanical properties of the porous structure-optimized inserts,and the effect of the porous structure-optimized inserts on reducing prosthesis micromotion and improving the contact behavior of the articular surface was analyzed. METHODS:Based on the CT scan data of the right ankle joint of a healthy adult and the INBONE Ⅱ system product manual,a three-dimensional model including bone and artificial joint system was established,and the total ankle replacement model(model A)was obtained after osteotomy and prosthesis installation,and then through four new types of inserts,G50,G60,D50,and D60,were obtained by transforming the porous structure of the original insert,and the original one was replaced with different inserts to establish an optimized total ankle replacement model(models B-E)corresponding to the inserts.The gait loads were applied on the five models to simulate the gait conditions.The differences in micromotion and articular surface contact behaviors at the implant-bone interface of all five models were compared. RESULTS AND CONCLUSION:(1)In the gait cycle,the micromotion of the prosthesis of the four optimized total ankle replacement models was lower than that of the original model.Compared with model A,the micromotion of the prosthesis in models B-E decreased by 5.4%,10.1%,8.1%,and 20.9%,respectively.The high micromotion area of t ??he tibial groove dome in the optimized model was significantly smaller than that of the original model.(2)The four optimized models obtained a larger articular surface contact area.Compared with model A,the average contact area of t ??he inserts in models B-E increased by 11.8%,14.7%,8.1%,and 32.6%,respectively.(3)Similar to the effect of increasing the contact area,compared with the original model,the contact stress of the optimized model decreased in varying degrees,and the value of model E decreased the most significantly(P<0.05),it is due to good mechanical properties and large porosity of the Diamond lattice that constitutes the D60-type insert.(4)The research results show that the use of porous structure to improve the inserts can improve the elasticity of the inserts and increase its ability to absorb joint impact,for favorable conditions are created for reducing micromotion at the implant-bone interface and improving joint contact behavior.
Full text:
1
Index:
WPRIM
Language:
Zh
Journal:
Chinese Journal of Tissue Engineering Research
Year:
2024
Type:
Article