Your browser doesn't support javascript.
loading
Detection of O-Linked-N-Acetylglucosamine Modification and Its Associated Enzymes in Human Degenerated Intervertebral Discs
Asian Spine Journal ; : 863-869, 2017.
Article in English | WPRIM | ID: wpr-102663
ABSTRACT
STUDY

DESIGN:

Human herniated discs were obtained from discectomy specimens for the immunohistochemical detection of O-GlcNAc and O-GlcNAcase (OGA)/O-GlcNAc transferase (OGT).

PURPOSE:

This study aimed to quantify the extent of O-GlcNAcylation and its associated enzymes (OGT/OGA) in human degenerated intervertebral discs. OVERVIEW OF LITERATURE The O-GlcNAcylation of nuclear, cytoplasmic, and mitochondrial proteins as well as the effects of such post-translational modifications are currently the focus of extensive research. O-GlcNAcylation is believed to contribute to the etiology of chronic illnesses by acting as a nutrient and stress sensor in the cellular environment. Mature intervertebral disc cells are chondrocyte-like cells, and O-GlcNAc has been shown to promote chondrocyte apoptosis in vitro. We believe that O-GlcNAcylation is a key regulator of disc degeneration.

METHODS:

Fifty-six specimens were fixed for 24 hours in a 10% solution of neutral-buffered formaldehyde, dehydrated, and embedded in paraffin. Tissue slices (4-µm-thick) were used for hematoxylin-eosin staining and immunohistochemistry.

RESULTS:

We found that O-GlcNAcylation of cytoplasmic proteins was less than that of nuclear proteins in both single cells and cell clusters. Cytoplasmic O-GlcNAcylation occurs subsequent to nuclear O-GlcNAcylation and is directly proportional to disc degeneration. OGT and O-GlcNAc expression levels were identical in all specimens examined.

CONCLUSIONS:

O-GlcNAc and OGA/OGT expression is shown to correlate for the first time with intervertebral disc cell degeneration. Increasing disc degeneration is associated with increasing O-GlcNAcylation in both nuclear and cytoplasmic proteins in human disc cells.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Paraffin / Spine / Transferases / In Vitro Techniques / Immunohistochemistry / Nuclear Proteins / Protein Processing, Post-Translational / Chronic Disease / Apoptosis / Diskectomy Type of study: Diagnostic study Limits: Humans Language: English Journal: Asian Spine Journal Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Paraffin / Spine / Transferases / In Vitro Techniques / Immunohistochemistry / Nuclear Proteins / Protein Processing, Post-Translational / Chronic Disease / Apoptosis / Diskectomy Type of study: Diagnostic study Limits: Humans Language: English Journal: Asian Spine Journal Year: 2017 Type: Article