Your browser doesn't support javascript.
loading
Role of nitric oxide in the pathogenesis of diabetic nephropathy in streptozotocin-induced diabetic rats
The Korean Journal of Internal Medicine ; : 32-41, 1999.
Article in English | WPRIM | ID: wpr-125515
ABSTRACT

OBJECTIVES:

Several reports suggest that enhanced generation or actions of nitric oxide (NO) have been implicated in the pathogenesis of glomerular hyperfiltration and hyperperfusion that occurs in early diabetes. However, the precise role of altered NO generation in the pathogenesis of diabetic nephropathy is unclear. The present study was aimed at investigating the role of nitric oxide in the pathogenesis of glomerular hyperfiltration and hyperperfusion in streptozotocin-induced diabetic rats.

METHODS:

To evaluate the role of NO in diabetic hyperfiltration, we measured plasma and urine concentrations of NO2-/NO3-, stable metabolic products of NO and protein expressions of three isoforms of nitric oxide synthase (NOS) in streptozotocin-induced diabetic rats. We also investigated renal hemodynamic changes, such as glomerular filtration rate (GFR) and renal plasma flow (RPF), in responses to acute and chronic administration of NO synthesis inhibitor, nitro-L-arginine methyl ester (L-NAME), in diabetic and control rats.

RESULTS:

Diabetic rats exhibited significantly elevated plasma and urinary NO2-/NO3- levels at 28 days after streptozotocin injection, and total excretion of NO2-/NO3- was approximately five-fold higher in diabetic rats than controls. Insulin and L-NAME treatment prevented the increases in plasma and urinary NO2-/NO3- concentrations in diabetic rats, respectively. The three isoforms of NOS (bNOS, iNOS, and ecNOS) were all increased in the renal cortex, whereas they remained unaltered in the renal medulla at day 28. GFR and RPF were significantly elevated in diabetic rats, and acute and chronic inhibition of NO synthesis by L-NAME attenuated the renal hemodynamic changes (increases in GFR and RPF) in diabetic rats, respectively.

CONCLUSIONS:

NO synthesis was increased due to enhanced NOS expression in diabetic rats, and chronic NO blockade attenuated renal hyperfiltration and hyperperfusion in diabetic rats. In addition, diabetic rats exhibited enhanced renal hemodynamic responses to acute NO inhibition and excreted increased urinary NO2-/NO3-. These results suggest that excessive NO production may contribute to renal hyperfiltration and hyperperfusion in early diabetes.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Renal Circulation / Rats, Sprague-Dawley / Nitric Oxide Synthase / NG-Nitroarginine Methyl Ester / Diabetes Mellitus, Experimental / Diabetic Nephropathies / Enzyme Inhibitors / Animals / Nitric Oxide Type of study: Etiology study Limits: Animals Language: English Journal: The Korean Journal of Internal Medicine Year: 1999 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Renal Circulation / Rats, Sprague-Dawley / Nitric Oxide Synthase / NG-Nitroarginine Methyl Ester / Diabetes Mellitus, Experimental / Diabetic Nephropathies / Enzyme Inhibitors / Animals / Nitric Oxide Type of study: Etiology study Limits: Animals Language: English Journal: The Korean Journal of Internal Medicine Year: 1999 Type: Article