Your browser doesn't support javascript.
loading
IL-11 promotes the treatment efficacy of hematopoietic stem cell transplant therapy in aplastic anemia model mice through a NF-κB/microRNA-204/thrombopoietin regulatory axis
Experimental & Molecular Medicine ; : e410-2017.
Article in English | WPRIM | ID: wpr-146657
ABSTRACT
Hematopoietic stem cell (HSC) transplantation could be of therapeutic value for aplastic anemia (AA) patients, and immunosuppressants may facilitate the efficiency of the procedure. As anti-inflammatory cytokine interleukin-11 (IL-11) has a thrombopoietic effect, its use in cases of chronic bone marrow failure, such as AA, has been proposed to induce HSC function. However, the putative mechanisms that may support this process remain poorly defined. We found that decreased miR-204-5p levels were coincident with increased proliferation in mouse HSCs following exposure to IL-11 in vitro. Through inhibiting NF-кB activity, miR-204-5p repression was demonstrated to be a downstream effect of IL-11 signaling. miR-204-5p was shown to directly target thrombopoietin (TPO) via sequence-dependent 3′-UTR repression, indicating that this microRNA-dependent pathway could serve an essential role in supporting IL-11 functions in HSCs. Increased TPO expression in HSCs following IL-11 exposure could be mimicked or blocked by inhibiting or overexpressing miR-204-5p, respectively. Consistent with these in vitro findings, IL-11 promoted HSC engraftment in a mouse model of AA, an effect that was attenuated in cells overexpressing miR-204-5p. The reduction in miR-204-5p levels is an integral component of IL-11 signaling that may play an essential role in treating AA.
Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: English Journal: Experimental & Molecular Medicine Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: English Journal: Experimental & Molecular Medicine Year: 2017 Type: Article