Your browser doesn't support javascript.
loading
Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation
Article in En | WPRIM | ID: wpr-164159
Responsible library: WPRO
ABSTRACT
Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs.
Subject(s)
Key words
Full text: 1 Index: WPRIM Main subject: Transplantation, Autologous / Urine / Biomarkers / Cell Differentiation / Cell Separation / Colony-Forming Units Assay / Cell Lineage / Multipotent Stem Cells / Chromosomal Instability / Cell Proliferation Type of study: Guideline Limits: Humans Language: En Journal: Journal of Korean Medical Science Year: 2015 Type: Article
Full text: 1 Index: WPRIM Main subject: Transplantation, Autologous / Urine / Biomarkers / Cell Differentiation / Cell Separation / Colony-Forming Units Assay / Cell Lineage / Multipotent Stem Cells / Chromosomal Instability / Cell Proliferation Type of study: Guideline Limits: Humans Language: En Journal: Journal of Korean Medical Science Year: 2015 Type: Article