Your browser doesn't support javascript.
loading
Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons
International Journal of Oral Biology ; : 129-135, 2010.
Article in Korean | WPRIM | ID: wpr-191457
ABSTRACT
Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ([Ca2+]i) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the [Ca2+]i, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced [Ca2+]i increase was suppressed both in a calcium free solution and after depletion of the intracellular Ca2+ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red (50 microM) and capsazepine (10 microM). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Sensory Receptor Cells / Ruthenium Red / Sensation / Spinal Nerve Roots / Tissue Donors / Capsaicin / Thermolysin / Calcium / Diagnosis-Related Groups / Reactive Oxygen Species Limits: Animals / Humans Language: Korean Journal: International Journal of Oral Biology Year: 2010 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Sensory Receptor Cells / Ruthenium Red / Sensation / Spinal Nerve Roots / Tissue Donors / Capsaicin / Thermolysin / Calcium / Diagnosis-Related Groups / Reactive Oxygen Species Limits: Animals / Humans Language: Korean Journal: International Journal of Oral Biology Year: 2010 Type: Article