Your browser doesn't support javascript.
loading
Decreased Expression and Induced Nucleocytoplasmic Translocation of Pancreatic and Duodenal Homeobox 1 in INS-1 Cells Exposed to High Glucose and Palmitate
Diabetes & Metabolism Journal ; : 65-71, 2011.
Article in English | WPRIM | ID: wpr-196222
ABSTRACT

BACKGROUND:

Type 2 diabetes mellitus (T2DM) is often accompanied by increased levels of circulating fatty acid. Elevations in fatty acids and glucose for prolonged periods of time have been suggested to cause progressive dysfunction or apoptosis of pancreatic beta cells in T2DM. However, the precise mechanism of this adverse effect is not well understood.

METHODS:

INS-1 rat-derived insulin-secreting cells were exposed to 30 mM glucose and 0.25 mM palmitate for 48 hours.

RESULTS:

The production of reactive oxygen species increased significantly. Pancreatic and duodenal homeobox 1 (Pdx1) expression was down-regulated, as assessed by reverse transcription-polymerase chain reaction and Western blot analyses. The promoter activities of insulin and Pdx1 were also diminished. Of note, there was nucleocytoplasmic translocation of Pdx1, which was partially prevented by treatment with an antioxidant, N-acetyl-L-cysteine.

CONCLUSION:

Our data suggest that prolonged exposure of beta cells to elevated levels of glucose and palmitate negatively affects Pdx1 expression via oxidative stress.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Genes, Homeobox / Blotting, Western / Reactive Oxygen Species / Apoptosis / Oxidative Stress / Diabetes Mellitus, Type 2 / Insulin-Secreting Cells / Fatty Acids / Glucose / Insulin Language: English Journal: Diabetes & Metabolism Journal Year: 2011 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Genes, Homeobox / Blotting, Western / Reactive Oxygen Species / Apoptosis / Oxidative Stress / Diabetes Mellitus, Type 2 / Insulin-Secreting Cells / Fatty Acids / Glucose / Insulin Language: English Journal: Diabetes & Metabolism Journal Year: 2011 Type: Article