Your browser doesn't support javascript.
loading
Protective effect of propofol against cerebral ischemic/reperfusion injury may involve inhibition of gap junction / 南方医科大学学报
Journal of Southern Medical University ; (12): 1678-1682, 2015.
Article in Chinese | WPRIM | ID: wpr-232547
ABSTRACT
<p><b>OBJECTIVE</b>To investigate the protective effect of propofol against focal cerebral ischemia/reperfusion (I/R) injury in rats and its relation with gap junction.</p><p><b>METHODS</b>Seventy adult male SD rats were randomly divided into sham-operated group, I/R group, low-, moderate-, and high-dose propofol groups (25, 50, 100 mg/kg; P25, P50, P100 groups, respectively), I/R+CBX group and P100+CBX group. Thread occlusion was used to induce middle cerebral artery occlusion (MCAO) in the mice for 2 h followed by reperfusion for 24 h. Longa's scores were used to evaluate the neurological behavior of the rats. TTC staining was used to measure the cerebral infarction volume and Western blotting was performed to detect the expressions of Cx43, PKC, Bax, and Bcl-2 in the brain of the rats.</p><p><b>RESULTS</b>Compared with the I/R group, the rats pretreated with moderate and high doses of propofol showed significantly reduced neurological behavior scores and cerebral infarction volume percentage, and the effect was more obvious in high-dose propofol pretreatment group. CBX obviously enhanced the protective effect of propofol against I/R injury. Compared with those in the sham-operated group, the protein expression of Cx43 and the Bax/Bcl-2 ratio were increased and the protein expression of PKC was reduced in I/R group, and these changes were significantly reversed by high-dose propofol pretreatment; the effects of propofol were further enhanced by CBX.</p><p><b>CONCLUSION</b>The protective effect of propofol against cerebral I/R injury may involve the inhibition of the gap junction via PKC signaling and by reducing the Bax/Bcl-2 ratio.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Brain / Protein Kinase C / Reperfusion Injury / Signal Transduction / Propofol / Brain Ischemia / Rats, Sprague-Dawley / Gap Junctions / Connexin 43 Limits: Animals Language: Chinese Journal: Journal of Southern Medical University Year: 2015 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Brain / Protein Kinase C / Reperfusion Injury / Signal Transduction / Propofol / Brain Ischemia / Rats, Sprague-Dawley / Gap Junctions / Connexin 43 Limits: Animals Language: Chinese Journal: Journal of Southern Medical University Year: 2015 Type: Article