Your browser doesn't support javascript.
loading
RS-1 enhanced the efficiency of CRISPR-Cas9 mediated knock-in of human lactoferrin / 生物工程学报
Chinese Journal of Biotechnology ; (12): 1224-1234, 2017.
Article in Chinese | WPRIM | ID: wpr-242263
ABSTRACT
This study aims to knock out the goat β-lactoglobulin (BLG) gene using CRISPR-Cas9 system and knock in human lactoferrin (hLF) at the BLG locus, and further study the effect of RAD51 stimulatory compound (RS-1) on homologous recombination efficiency. First, we designed an sgRNA targeting the first exon of goat BLG gene and constructed a co-expression vector pCas9-sgBLG. This sgRNA vector was then transfected into goat ear fibroblasts (GEFs), and the target region was examined by T7EN1 assay and sequencing. Second, we constructed a targeting vector pBHA-hLF-NIE including NEO and EGFP genes based on BLG gene locus. This targeting vector together with pCas9-sgBLG expression vector was co-transfected into GEFs. Transfected cells were then treated with 0, 5, 10 and 20 μmol/L RS-1 for 72 h to analyse the EGFP expression efficiency. Next, we used 800 μg/mL G418 to screen G418-resistent cell clones, and studied hLF site-specific knock-in cell clones by PCR and sequencing. The editing efficiency of sgBLG was between 25% and 31%. The EGFP expression efficiency indicated that the gene knock-in efficiency was improved by RS-1 in a dose-dependent manner, which could reach 3.5-fold compared to the control group. The percentage of positive cells with hLF knock-in was increased to 32.61% when 10 μmol/L RS-1 was used. However, when the concentration of RS-1 increased to 20 μmol/L, the percentage of positive cells decreased to 22.22% and resulted in an increase of senescent cell clone number. These results suggested that hLF knock-in and BLG knock-out in GEFs were achieved by using CRISPR/Cas9 system, and optimum concentration of RS-1 could improve knock-in efficiency, which provides a reference for efficiently obtaining gene knock-in cells using CRISPR/Cas9 in the future.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Biotechnology Year: 2017 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Biotechnology Year: 2017 Type: Article