Your browser doesn't support javascript.
loading
Directed molecular evolution of nitrite oxido-reductase by DNA-shuffling / 生物医学与环境科学(英文)
Biomedical and Environmental Sciences ; (12): 113-118, 2007.
Article in English | WPRIM | ID: wpr-249880
ABSTRACT
<p><b>OBJECTIVE</b>To develop directly molecular evolution of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremely slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatment.</p><p><b>METHODS</b>The norB gene coding the ndtrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria.</p><p><b>RESULTS</b>After DNA-shuffling with sexual PCR and staggered extension process PCR, the sequence was different from its parental DNA fragments and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by DNA-shuffling was up to 42.9 mg/L x d, which was almost 10 times higher than that of its parental bacteria. Furthermore, the modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures.</p><p><b>CONCLUSION</b>DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Phylogeny / Chemistry / Cloning, Molecular / Sequence Analysis, DNA / Directed Molecular Evolution / Deltaproteobacteria / Gammaproteobacteria / DNA Shuffling / Escherichia coli / Genetics Language: English Journal: Biomedical and Environmental Sciences Year: 2007 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Phylogeny / Chemistry / Cloning, Molecular / Sequence Analysis, DNA / Directed Molecular Evolution / Deltaproteobacteria / Gammaproteobacteria / DNA Shuffling / Escherichia coli / Genetics Language: English Journal: Biomedical and Environmental Sciences Year: 2007 Type: Article