Your browser doesn't support javascript.
loading
Sequential fluorescent labeling observation of maxillary sinus augmentation by a tissue-engineered bone complex in canine model / 国际口腔科学杂志·英文版
International Journal of Oral Science ; (4): 39-46, 2009.
Article in English | WPRIM | ID: wpr-278973
ABSTRACT
<p><b>AIM</b>To evaluate the effects of maxillary sinus floor elevation by a tissue-engineered bone complex of beta-tricalcium phosphate (beta-TCP) and autologous osteoblasts in dogs.</p><p><b>METHODOLOGY</b>Autologous osteoblasts from adult Beagle dogs were cultured in vitro. They were further combined with beta-TCP to construct the tissue-engineered bone complex. 12 cases of maxillary sinus floor elevation surgery were made bilaterally in 6 animals and randomly repaired with the following 3 groups of materials Group A (osteoblasts/beta-TCP); Group B (beta-TCP); Group C (autogenous bone) (n=4 per group). A polychrome sequential fluorescent labeling was performed post-operatively and the animals were sacrificed 24 weeks after operation for histological observation.</p><p><b>RESULTS</b>Our results showed that autologous osteoblasts were successfully expanded and the osteoblastic phenol-types were confirmed by ALP and Alizarin red staining. The cells could attach and proliferate well on the surface of the beta-TCP scaffold. The fluorescent and histological observation showed that the tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than beta-TCP along or even autologous bone. It had also maximally maintained the elevated sinus height than both control groups.</p><p><b>CONCLUSION</b>Porous beta-TCP has served as a good scaffold for autologous osteoblasts seeding. The tissue-engineered bone complex with beta-TCP and autologous osteoblasts might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Osteoblasts / Osteogenesis / Pathology / Physiology / General Surgery / Transplantation / Transplantation, Autologous / Biocompatible Materials / Calcification, Physiologic / Calcium Phosphates Limits: Animals Language: English Journal: International Journal of Oral Science Year: 2009 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Osteoblasts / Osteogenesis / Pathology / Physiology / General Surgery / Transplantation / Transplantation, Autologous / Biocompatible Materials / Calcification, Physiologic / Calcium Phosphates Limits: Animals Language: English Journal: International Journal of Oral Science Year: 2009 Type: Article