Your browser doesn't support javascript.
loading
Three-dimensional Finite Element Analysis of the Mechanical Stress on Root from Orthodontic Tooth Movement by Sliding Mechanics / 华中科技大学学报(医学)(英德文版)
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 745-747, 2007.
Article in Chinese | WPRIM | ID: wpr-284660
ABSTRACT
In order to study mechanical stress on root from orthodontic tooth movement by sliding mechanics, a 3-dimensional finite element model incorporating all layers of a human mandibular dental arch with orthodontic appliance has been developed to simulate mechanical stress on root from the orthodontic tooth movement. Simulated orthodontic force of 2 N at 0, 30 and 45 degree from the horizontal axis was applied to the crown of the teeth. The finite element analysis showed when or- thodontic forces were applied to the tooth, the stress was mainly concentrated at the neck of the tooth decreasing uniformly to the apex and crown. The highest stress on the root was 0.621 N/ram2 for cer- vical margin of the canine, and 0.114 N/mm2 for apical region of the canine. The top of canine crown showed the largest amount of displacement (2.417 μm), while the lowest amount of displacement was located at the apical region of canine (0.043 μm). In conclusion, this model might enable one to simulate orthodontic tooth movements clinically. Sliding force at 2 N is ideal to ensure the bodily or- thodontic tooth movement. The highest stress concentration in the roots was always localized at the cervical margin when orthodontic force of 2 N at 0, 30 and 45 degree from the horizontal axis, so there may be the same risk of root resorption when orthodontic force of 2 N at 0, 30 and 45 degree was used in clinic cases.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Huazhong University of Science and Technology (Medical Sciences) Year: 2007 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Huazhong University of Science and Technology (Medical Sciences) Year: 2007 Type: Article