Your browser doesn't support javascript.
loading
GABA A receptor participates in respiratory enhancement induced by nikethamide in neonatal rats / 南方医科大学学报
Journal of Southern Medical University ; (12): 301-304, 2008.
Article in Chinese | WPRIM | ID: wpr-293390
ABSTRACT
<p><b>OBJECTIVE</b>To investigate the role of GABA A receptor in nikethamide-induced respiratory enhancement in the medullary slices of neonatal rats.</p><p><b>METHODS</b>Ex vivo medullary slices of neonatal rats (1 to 3 days old) containing the medial region of the nucleus retrofacialis with the hypoglossal nerve rootlets were prepared and perfused with modified Kreb's solution to record respiration-related rhythmic discharge activity (RRDA) from the hypoglossal nerve rootlets using suction electrodes. Thirty RRDA-positive slices were randomized into 5 equal groups and perfused with nikethamide (at concentrations of 0.5, 1, 3, 5, 7, and 10 microg/ml with the optimal nikethamide concentration determined), GABA (at 10, 20, 40, and 60 micromol/ to determine the optimal concentration), 10 micromol/ bicuculline, 10 micromol/ bicuculline plus 40 micromol/L GABA, and 5 microg/ml nikethamide followed by 5 microg/ml nikethamide plus 10 micromol/ bicuculline after wash out, respectively.</p><p><b>RESULTS</b>Nikethamide increased RRDA at the concentrations of 0.5-7 microg/ml, and 5 microg/ml nikethamide showed the most distinct effect on the inspiratory time (TI), integral amplitude (IA), and respiratory cycle (RC). GABA at 40 micromol/ showed the most effective inhibition of RRDA in terms of TI, IA, and RC. Bicuculline at 10 micromol/ could increase the IA, TI and RC, but the combination of 10 micromol/ bicuculline and 40 micromol/ GABA had no significant effects on RRDA. Compared with nikethamide used alone, nikethamide plus bicuculline significantly increased TI and IA without affecting RC.</p><p><b>CONCLUSION</b>Nikethamide can enhance RRDA of the hypoglossal nerve rootlets in the medullary slices of neonatal rats, and the effect can be partially mediated by the GABA A receptor.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Physiology / Respiration / Respiratory Center / In Vitro Techniques / Medulla Oblongata / Random Allocation / Rats, Sprague-Dawley / Receptors, GABA-A / Central Nervous System Stimulants Limits: Animals Language: Chinese Journal: Journal of Southern Medical University Year: 2008 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Physiology / Respiration / Respiratory Center / In Vitro Techniques / Medulla Oblongata / Random Allocation / Rats, Sprague-Dawley / Receptors, GABA-A / Central Nervous System Stimulants Limits: Animals Language: Chinese Journal: Journal of Southern Medical University Year: 2008 Type: Article