Your browser doesn't support javascript.
loading
Effect of PD0332991 on biological activity of hematopoietic stem cells in mice / 中华血液学杂志
Chinese Journal of Hematology ; (12): 157-161, 2014.
Article in Chinese | WPRIM | ID: wpr-295688
ABSTRACT
<p><b>OBJECTIVE</b>To investigate the effect of PD0332991 (C24H29N7O2) on cell cycle, apoptosis, differentiation and self-renewal of hematopoietic stem cells (HSC) in mice.</p><p><b>METHODS</b>The self renewal ability of HSCs was measured by cobblestone forming cell assay (CAFC). The colony-forming cell (CFC) assay was used to quantify the changes of numbers and functions of HPC after the treatment of the compound. The expressions of self-renewal regulation genes, cell cycle-related genes, apoptosis-related genes were measured by real-time PCR. The cell cycle status and apoptosis of HSC and HPC were analyzed by flow cytometry.</p><p><b>RESULTS</b>There were obvious changes in cell cycle regulation between control and PD0332991 groups. HSCs in G1 phase increased significantly from 76.3% to 89.5% after treatment of PD0332991 (P<0.05) while cells in S, G2 and M phase reduced from 20.5% to 7.3% (P<0.05). HPCs in G1 phase also increased from 74% to 87.4% after treatment of PD0332991 (P<0.05) while cells in S, G2 and M phase reduced from 25.54% to 11.6% (P<0.05). The apoptotic fractions between control and PD0332991 groups had no statistical difference (P>0.05). After cultured with PD0332991, the expression levels of cell cycle genes CDK1, CyclinA2, CyclinF, p18, p19 and p27 decreased by 58.77%, 66.35%, 56.33%, 62.18%, 32.28% and 36.53% respectively, while expression of CDK7 increased by 27.27% (P<0.05). No visible expression difference was observed in apoptosis and self-renew related genes. After treatment of PD0332991, the self-renewal ability of HSC decreased significantly. There were almost no CFCs in PD0332991 group in CAFC assay. Similarly, the frequency of CFCs was dramatically lower in PD0332991 group.</p><p><b>CONCLUSION</b>These results suggested that PD0332991 affected HSC/HPC from mice mainly through inhibiting the cell cycle rather than apoptosis. It also suggested that CDK4/6 might play a key role in the regulation of HSC/HPC.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Piperazines / Pyridines / Hematopoietic Stem Cells / Cell Cycle / Cell Differentiation / Cells, Cultured / Apoptosis / Cell Biology / Cell Proliferation Limits: Animals Language: Chinese Journal: Chinese Journal of Hematology Year: 2014 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Piperazines / Pyridines / Hematopoietic Stem Cells / Cell Cycle / Cell Differentiation / Cells, Cultured / Apoptosis / Cell Biology / Cell Proliferation Limits: Animals Language: Chinese Journal: Chinese Journal of Hematology Year: 2014 Type: Article