Your browser doesn't support javascript.
loading
Experimental Study on Low Intensity Ultrasound and Tissue Engineering to Repair Segmental Bone Defects / 华中科技大学学报(医学)(英德文版)
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 597-600, 2006.
Article in Chinese | WPRIM | ID: wpr-313394
ABSTRACT
In order to evaluate the efficacy of low intensity ultrasound and tissue engineering technique to repair segmental bone defects, the rabbit models of 1.5-cm long rabbit radial segmental osteoperiosteum defects were established and randomly divided into 2 groups. All defects were implanted with the composite of calcium phosphate cement and bone mesenchymal stem cells, and additionally those in experimental group were subjected to low intensity ultrasound exposure, while those in control group to sham exposure. The animals were killed on the postoperative week 4, 8 and 12 respectively, and specimens were harvested. By using radiography and the methods of biomechanics, histomorphology and bone density detection, new bone formation and material degradation were observed. The results showed that with the prolongation of time after operation, serum alkaline phosphatase (AKP) levels in both groups were gradually increased, especially in experimental group,reached the peak at 6th week (experimental group 1.26 mmol/L; control group 0.58 mmol/L), suggesting the new bone formation in both two group, but the amount of new bone formation was greater and bone repairing capacity stronger in experimental group than in control group. On the 4th week in experimental group, chondrocytes differentiated into woven bone, and on the 12th week, remodeling of new lamellar bone and absorption of the composite material were observed. The mechanical strength of composite material and new born density in experimental group were significantly higher than in control group, indicating that low intensity ultrasound could not only effectively increase the formation of new bone, but also accelerate the calcification of new bone. It was concluded that low intensity ultrasound could evidently accelerate the healing of bone defects repaired by bone tissue engineering.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Huazhong University of Science and Technology (Medical Sciences) Year: 2006 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Huazhong University of Science and Technology (Medical Sciences) Year: 2006 Type: Article