Your browser doesn't support javascript.
loading
Re-expression of RASSF1A by 5-Aza-CdR Induced Demethylation of the Promoter Region in Human Biliary Tract Carcinoma Cells / 华中科技大学学报(医学)(英德文版)
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 281-284, 2007.
Article in Chinese | WPRIM | ID: wpr-317427
ABSTRACT
Hypermethylation of the promoter region is an important mean for the transcriptional repression of a number of cancer-associated genes, and over-expression and/or increased activity of DNA methyltransferase are considered to be the main cause of promoter hypermethylation. In order to further explore the epigenetic mechanism of tumor suppressor gene RASSF1A inactivation,5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, was used to treat the human biliary tract carcinoma cell line QBC-939 at the concentration of 5 μmol/L for 24 h in this study. After the chemical intervention with 5-Aza-CdR, the methylation status in the promoter region of RASSF1A gene was detected by methylation specific PCR (MS-PCR), and the expression alteration of RASSF1A mRNA and protein were observed by RT-PCR and Western Blot respectively. Following the treatment with 5-Aza-CdR, methylaiton status in the promoter region of RASSF1A gene was reversed from methylation to unmethylation. A 280 bp DNA band which represented RASS1FA expression at transcriptional level and a 40 kDa (1kDa=0.9921 ku) protein band which represented RASSF1A expression at protein level were detected by RT-PCR and Western Blot respectively in the experimental group cells and there were no corresponding bands in the control group cells. The experimental results suggest that 5-Aza-CdR can induce demethylation in the promoter region of RASSF1A. It can also reverse epigenetic transcriptional silencing caused by DNA methylation and induce the re-expression of RASSF1A in QBC-939. This study also suggest that the mechanism of RASSF1A inactivation is very closely related to the methylation of the promoter region, which may provide a new epigenetic understanding for tumor related gene inactivation and the pathogenesis of biliary tract carcinoma.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Huazhong University of Science and Technology (Medical Sciences) Year: 2007 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Journal of Huazhong University of Science and Technology (Medical Sciences) Year: 2007 Type: Article