Your browser doesn't support javascript.
loading
Preparation of nano-nacre artificial bone / 南方医科大学学报
Journal of Southern Medical University ; (12): 2171-2173, 2008.
Article in Chinese | WPRIM | ID: wpr-321738
ABSTRACT
<p><b>OBJECTIVE</b>To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use.</p><p><b>METHODS</b>The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA.</p><p><b>RESULTS</b>Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone.</p><p><b>CONCLUSIONS</b>The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Polyesters / Polymers / Tensile Strength / Biocompatible Materials / Materials Testing / Calcium Carbonate / Chemistry / Porosity / Bivalvia / Bone Substitutes Limits: Animals / Humans Language: Chinese Journal: Journal of Southern Medical University Year: 2008 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Polyesters / Polymers / Tensile Strength / Biocompatible Materials / Materials Testing / Calcium Carbonate / Chemistry / Porosity / Bivalvia / Bone Substitutes Limits: Animals / Humans Language: Chinese Journal: Journal of Southern Medical University Year: 2008 Type: Article