Your browser doesn't support javascript.
loading
Resveratrol inhibits the electrical activity of subfornical organ neurons in rat / 生理学报
Acta Physiologica Sinica ; (6): 523-528, 2005.
Article in English | WPRIM | ID: wpr-334138
ABSTRACT
The effects of resveratrol on the discharges of neurons in rat subfornical organ (SFO) slices were examined by using extracellular recording technique. The results are as follows (1) In response to the application of resveratrol (1, 5, 10 mumol/L, n=65) into the superfusate for 2 min, the spontaneous discharge rate of 60/65 (92.3%) neurons was significantly decreased in a dose-dependent manner;(2) Application of L-glutamate (0.3 mmol/L) into the superfusate led to a marked increase in discharge rate of all 12 (100%) neurons in an epileptiform pattern. The increased discharges of 10/12 (83.3%) neurons were suppressed by application of resveratrol (5 mumol/L);(3) In 8 neurons, the selective L-type calcium channel agonist, Bay K8644 (0.1 mumol/L), induced a significant increase in discharge rate of all 8 (100%) neurons. The increased discharges of all 8 (100%) neurons were suppressed by resveratrol (5 mumol/L);(4) In 14 neurons, nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) 50 mumol/L significantly increased the discharge rate of 11/14 (78.6%) neurons. Resveratrol (5 ?mol/L) applied into the superfusate reduced the increased discharges of 9/11 (81.8%) neurons;(5) In 12 neurons, the large-conductance Ca(2+)-activated K(+) channel blocker tetraethylammonium chloride (TEA) 1 mmol/L significantly increased the discharge rate of 10/12 (83.3%) neurons. Resveratrol (5 mumol/L) inhibited the increased discharges of 9/10 (90%) neurons. These results suggest that resveratrol inhibits the electrical activity of SFO neurons. This effect may be related to its properties of blockade of L-type voltage-gated calcium channel and nitric oxide (NO) promoting, and probably has no association with large-conductance Ca(2+)-activated K(+) channel.
Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: Acta Physiologica Sinica Year: 2005 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: Acta Physiologica Sinica Year: 2005 Type: Article