Your browser doesn't support javascript.
loading
RNA interference targeting mu-opioid receptors reverses the inhibition of fentanyl on glucose-evoked insulin release of rat islets / 中华医学杂志(英文版)
Chinese Medical Journal ; (24): 3652-3657, 2010.
Article in English | WPRIM | ID: wpr-336568
ABSTRACT
<p><b>BACKGROUND</b>Mu opioid receptor plays an important role in many physiological functions. Fentanyl is a widely used opioid receptor agonist for analgesia. This study was conducted to test the role of mu-opioid receptor on insulin release by determining whether fentanyl affected insulin release from freshly isolated rat pancreatic islets and if small interfering RNAs (siRNA) targeting mu-opioid receptor in the islets could knock down mu-opioid receptor expression.</p><p><b>METHODS</b>Islets were isolated from ripe SD rats' pancreas by common bile duct intraductal collagenase V digestion and purified by discontinuous Ficoll density gradient centrifugation. The siRNA knock-down of mu-opioid receptor mRNA and protein in islet cells was analyzed by semi-quantitative real time-PCR and Western blotting. After siRNA-transfection for 48 hours, the islets were co-cultured with fentanyl as follows 0 ng/ml, 3 ng/ml and 30 ng/ml for 48 hours. Then glucose-evoked insulin release was performed. As a control, the insulin release was also analyzed in islets without siRNA-trasfection after being co-cultured with fentanyl for 48 hours.</p><p><b>RESULTS</b>After 48 hours of transfections, specific siRNA targeting of mu-opioid receptors produced significant reduction of mu-opioid receptor mRNA and protein (P < 0.01). Fentanyl significantly inhibited glucose-evoked insulin release in islets in a concentration dependent manner (P < 0.01). But after siRNA-transfection for 48 hours, the inhibition on glucose-evoked insulin release was reversed (P < 0.01).</p><p><b>CONCLUSIONS</b>RNA interference specifically reduces mu-opioid receptor mRNA and protein expression, leading to reversal of the fentanyl-induced inhibition on glucose-evoked insulin release of rat islets. The activation of opioid receptor induced by fentanyl functions to inhibit insulin release. The use of RNAi presents a promising tool for future research in diabetic mechanisms and a novel therapy for diabetes.</p>
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Physiology / RNA, Messenger / Cell Survival / Cells, Cultured / Fentanyl / Islets of Langerhans / Rats, Sprague-Dawley / Receptors, Opioid, mu / Bodily Secretions Limits: Animals Language: English Journal: Chinese Medical Journal Year: 2010 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Pharmacology / Physiology / RNA, Messenger / Cell Survival / Cells, Cultured / Fentanyl / Islets of Langerhans / Rats, Sprague-Dawley / Receptors, Opioid, mu / Bodily Secretions Limits: Animals Language: English Journal: Chinese Medical Journal Year: 2010 Type: Article