Your browser doesn't support javascript.
loading
Biocompatibility of surface modified PHBHHx with rat embryonic neural stem cells / 生物工程学报
Chinese Journal of Biotechnology ; (12): 1216-1226, 2012.
Article in Chinese | WPRIM | ID: wpr-342403
ABSTRACT
To study the attachment, proliferation and differentiation of neural stem cells (NSCs) on surface modified PHBHHx films and to establish the theory of PHBHHx application in NSCs-based brain tissue engineering. PHBHHx film was fabricated by a solution-casting method, and the morphology of the film was observed under scanning electron microscopy(SEM). The films were treated by NaOH or lipase, then the surface hydrophilic property was characterized using water contact angle measurement. NSCs were isolated from the cerebral cortex of rat embryos on embryonic day 14.5, and cultured on surface treated PHBHHx films. The morphology of NSCs attached on the film was visualized under SEM, and the survival and differentiation of NSCs were observed through immunocytochemical staining. Compared with the untreated PHBHHx films, the water contact angle of NaOH or lipase treated PHBHHx films decreased dramatically, and the number of NSCs attached significantly increased. NSCs survived well on treated PHBHHx films and differentiated into neurons and glial cells. The amelioration of hydrophilic property of PHBHHx film improved its biocompatibility with NSCs. PHBHHx can serve as a novel CNS tissue engineering biomaterial applied for NSCs transplantation, brain repairing and regeneration.
Subject(s)
Full text: Available Index: WPRIM (Western Pacific) Main subject: Physiology / Surface Properties / Caproates / Cell Adhesion / Cell Differentiation / Cells, Cultured / Cerebral Cortex / Chemistry / 3-Hydroxybutyric Acid / Coated Materials, Biocompatible Limits: Animals Language: Chinese Journal: Chinese Journal of Biotechnology Year: 2012 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Physiology / Surface Properties / Caproates / Cell Adhesion / Cell Differentiation / Cells, Cultured / Cerebral Cortex / Chemistry / 3-Hydroxybutyric Acid / Coated Materials, Biocompatible Limits: Animals Language: Chinese Journal: Chinese Journal of Biotechnology Year: 2012 Type: Article