Your browser doesn't support javascript.
loading
A correlational analysis of maximal oxygen uptake and anaerobic threshold as compared with middle and long distance performances / 体力科学
Japanese Journal of Physical Fitness and Sports Medicine ; : 94-102, 1981.
Article in English | WPRIM | ID: wpr-371329
ABSTRACT
Various studies have reported on VO<SUB>2</SUB>max differences in men, with or without respect to distance run performances, and demonstrated that VO<SUB>2</SUB>max was the most important factor in endurance work capacity. This study was undertaken to reveal whether VO<SUB>2</SUB>max would still be the best determinant of endurance work capacity (or distance run performances), comparing it with AT parameters using the technique of correlational analyses. Twenty-seven distance runners, 16-26 years of age including an Olympic runner, underwent a multistage-incremental treadmill test for the assessment of submaximal and maximal work capacity. ATs were subjectively evaluated and determined as the point of breakaway of gas exchange criterion parameters according to Davis et al.'s method, and also referring to Wasserman et al.'s method.<BR>The mean VO<SUB>2</SUB>max was 4.518 <I>l</I>/mmn (70.1 ml/kg⋅BW/min, 78.1 ml/kg . LBM/min), whilst the mean AT appeared to be 3.444 <I>l</I>/mmn (52.8 ml/kg/min, 75.60% of VO<SUB>2</SUB>max) . These results are in good agreement with previous results reported by others. Interestingly, all distance performances (i.e., 1-mile, 2-mile, and 3-mile) correlated highest with AT (ml/kg/min), secondly with exhaustion time, and thirdly with either VO<SUB>2</SUB>max or another AT parameter. AT (ml/kg/min) alone accounted for approximately 510, 73%, and 80% of the variance in the 1-mile, 2-mile, and 3-mile performances, respectively.<BR>Since absolute VO<SUB>2</SUB>max is known to be a function of body size (e.g., body weight), an attempt was made to evaluate the relationships between the metabolic parameters and the distance performances through partial correlations holding the influence of body weight or LBM statistically constant. As a result, the correlation of VO<SUB>2</SUB>max (<I>1</I>/mm) with the 3-mile performance increased considerably to r<SUB>p</SUB>=-0.781 ; however, the degree of the relationship was not greater than the zero-order correlation (r=-0.896) obtained between AT (ml/kg/min) and the performance. Furthermore, when entered into a forward selection multiple regression with the 3-mile performance as the dependent variable, AT (<I>l</I>/min) accounted for only an additional 0.8% of the variance. VO<SUB>2</SUB>max (<I>l</I>/min), true % 02, % body fat body weight, VO<SUB>2</SUB>max (ml/kg/min), and vital capacity also accounted for only an additional 0.1%, 0.4%, 0.5%, 0.8%, 1.8%, and 1.8% of the variance, respectively. These data indicate that, considering the sample studied and limitations within this study, AT (ml/kg/min) could be the most significant determinant of the 3-mile run performance and, though to a lesser extent, the 2-mil eand 1-mile run performances.
Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: Japanese Journal of Physical Fitness and Sports Medicine Year: 1981 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: English Journal: Japanese Journal of Physical Fitness and Sports Medicine Year: 1981 Type: Article