Your browser doesn't support javascript.
loading
The research on the property of GluR1 subunit in rat models of motor complication of Parkinson' s disease after CaMKⅡ inhibitor KN-93 treatment / 中华行为医学与脑科学杂志
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 888-890, 2010.
Article in Chinese | WPRIM | ID: wpr-386361
ABSTRACT
Objective To investigate the alteration of phosphorylated GluR1Ser831 and behavioural effects in a rat model of levodopa-induced motor complications after Ca2 +/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) inhibitor KN-93 treatment. Methods The hemi-parkinsonian rat model was produced by injecting stereotaxically 6-OHDA to right medial forebrain bundle. Then, rats were intraperitoneally treated with levodopa ( 50 mg/kg with benserazide 12.5 mg/kg,twice daily) for 22 days. On day 23 ,rats received KN-93 before levodopa administration. Rotational duration was estimated. After sacrificed, subcellualr distribution of GluR1 and phosphorylated GluR1Ser831 were observed by western blot. Results The study showed that CaMKⅡ inhibitor KN-93 prolonged rotational duration. Moreover, KN-93 could regulate subcellular distribution of GluR1 and reduce hyperphosphorylation of GluR1 Ser831, which was closely associated with levodopa-induced motor complications. The expression of membrane GluR1 and phosphorylated GluR1Ser831 was (83.4 ±4.2)% and (47.2 ±5.2)% ,respectively. Conclusions These results indicated that activation of CaMKⅡ contributed to development of motor complications, through a mechanism that involved an increase in phosphorylated GluR1 Ser831. Pharmaceuticals which act to inhibit CaMKⅡ may be useful in the treatment of the motor complications in parkinsonian patients.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Behavioral Medicine and Brain Science Year: 2010 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Behavioral Medicine and Brain Science Year: 2010 Type: Article