Your browser doesn't support javascript.
loading
Compatibility of osteoblasts on the polylactic acid-chitosan fiber/hydroxyapatite-calcium silicate composite scaffold material / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 1397-1401, 2010.
Article in Chinese | WPRIM | ID: wpr-402812
ABSTRACT

BACKGROUND:

Practice has proved that organic material and inorganic materials used alone are not ideal scaffold materials. Polylactic acid (PLA) possessing excellent biocompatibility, degradability and absorbability, PLAs composites will be one of the most important biocomposite in the 21~(st) century.

OBJECTIVE:

To observe the effects of PLA-chitosan fiber (CF)/hydrexyapatite-calcium silicate (HA-CS) on adhesion, proliferation and differentiation of osteoblasts.

METHODS:

The rat osteoblasts were obtained from the cranium of newborn Wistar rats within 24 hours, and primarily cultured using modified collagenase digestion. The cells were generated and their biological characteristic was examined by inverted phase-contrast microscope, hematoxylin-eosin staining, alkaline phosphatase (ALP) staining and mineralized nodules staining. Then the cells at passage 3 were co-cultured with PLA-CF, PLA-CF/CS and PLA-CF/HA-CS in vitro. At 3, 6 and 9 days of the culture, cell morphology was observed by inverted phase contrast microscopy. In addition, MTT assay and ALP activity test were used to observe the effects of three kinds of materials on cell differentiation and proliferation. RESULTS AND

CONCLUSION:

Osteoblasts attached on all three scaffold materials can adhere, grow, differentiate and proliferate. The effect of three materials on cell activity was PLA-CF/HA-CS>PLA-CF/CS>PLA-CF. The composite scaffold PLA-CF/HA-CS has a good compatibility, indicating that the material has a great potential for application in bone tissue engineering.
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2010 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2010 Type: Article