Your browser doesn't support javascript.
loading
Study on biomechanical properties of several scaffold materials for tissue engineering / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 7117-7120, 2007.
Article in Chinese | WPRIM | ID: wpr-407693
ABSTRACT

BACKGROUND:

It is still a research focus on constructing substitution of the human tissues and organs, or producing the alliance for grafting by engineering methods in tissue engineering. Among these researches, it is pivotal to choose appropriate materials. The prepared scaffolds should have suitable tensile strength and mechanical toughness to withstand the various outside forces without being damaged. So, it is very necessary to evaluate the biomechanical properties of candidated materials in tissue engineering, which can supply the references for selecting materials for tissue scaffolds and their designation.

OBJECTIVE:

To investigate the biomechanical properties of nine kinds of scaffold materials, in order to supply a biomechanical basis for the selection and design of scaffold materials for tissue engineering.

DESIGN:

A repetitive measurement study.

SETTING:

College of Bioengineering, Chongqing University.MATERIALS The materials involved in this study were poly (DL-lactic-co - glycolic acid) (PLGA), sodium polymannuronate, gelatine, chitosan, collagen, acellular porcine dermis (APD), acellular vascular matrix (AVM),APD-PLGA, AVM-PLGA, modified gelatine and chitosan.

METHODS:

All the experiments related to this study were completed in the Biorheology laboratory of the College of Bioengineering, Chongqing University from April 2006 to March 2007. The nine materials above were prepared, gelatine and chitosan were modified. Stress-strain testing was performed at 10 mm per minute by a material testing machine (INSTRON 1011, USA). The Yang's modulus was calculated in the range of 0.005 to 0.02, the ultimate strain and stress were also obtained.MAIN OUTCOME

MEASURES:

The ultimate strain, ultimate stress and Yang's modulus of the nine materials were analyzed.polymannuronate > AVM-PLGA > collagen > gelatine (P < 0.05). The rate of burst straining of chitosan and PLGA were greater than those of other materials, 133% and 276% respectively (P < 0.05). In addition, after being combined with ultimate stresses of APD and APD-PLGA were greater than that of other materials, i.e., their burst strengths were greater than those of other materials. The data also indicated that the burst strength of APD-PLGA was a little greater than that of APD (P > 0.05). The burst strengths of gelatin, chitosan, and collagen were similar at the range of 7.67 to 9.51 MPa (P > 0.05). The burst strengths of collagen and sodium polymannuronate were from 1.16 to 1.40 MPa, which were the least among all the materials. At the same time, being combined with PLGA, the burst strength of AVM-PLGA greatest, i.e., its rigidity was the greatest. The rigidity of APD was the least. After combined with PLGA, the rigidity of AVM and APD were increased (P < 0.05), and corresponded with PLGA (P> 0.05). Except for gelatin, the order of rigidity in the materials was AVM-PLGA > PLGA > APD-PLGA > AVM > chitosansodium polymannuronate > collagen > APD.

CONCLUSION:

AVM and APD have good biomechanical properties, which are very different from the water-soluble collagen. It is promising to improve the biomechanical properties of sodium polymannuronate, gelatin and chitosan by the complex of PLGA.
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2007 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2007 Type: Article