Your browser doesn't support javascript.
loading
Effects of irradiation on the cell cycle and DNA content of marrow hematopoietic stromal cells in mice at an early stage / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 206-207, 2005.
Article in Chinese | WPRIM | ID: wpr-409777
ABSTRACT

BACKGROUND:

Abnormal hematopoietic microenvironment is an important factor causing dyshematopoiesis. However, no consensus has been reached on the sensitivity of hematopoietic stromal cells to irradiation.

OBJECTIVE:

To observe the changes of marrow stromal cells (MSCs) cycle and DNA content during the early stage of irradiation damage in mice, so as to further understand dyshematopoiesis due to radiation and provide scientific basis to avoid deleterious factors in hematopoietic environment.

DESIGN:

Completely randomized grouping and randomized controlled study based on the experimental animals.

SETTING:

Central laboratory of altitude military affairs medical department and altitude research institute of preventive medicine department, a military medical university of Chinese PLA.MATERIALS This study was carried out at the Experimental Animal Center of Third Military Medical University between October 2002 and April 2003. A total of 60 healthy male Kunming mice were randomly divided into irradiation damage group and healthy control group, each having 30 mice.

METHODS:

The 30 mice in irradiation damage group were exposed to 60Co-γ of irradiation at a dose rate of 1.27 Gy/minutes within a distance of 4 m. Then the mice' marrow cells were harvested at day 3 and day 7 after irradiation, and were cultured in vitro for 14 days and 21 days for observation. Meanwhile the other 30 healthy mice unexposed to irradiation were considered as normal controls.MAIN OUTCOME

MEASURES:

Post-radiation number of MSCs colonies,cell cycle and DNA content.

RESULTS:

Although MSCs could grow and be adhered to walls after being exposed to irradiation of 5.0 Gy/s, the number of MSCs colonies was found significantly decreased compared to that of rnormal control group( P < 0.01 ).The colony number of the MSCs irradiated for 7 days obviously increased than that of MSCs irradiated for 3 days; however, MSCs recovered slowly and resulted in prolonged culture time, indicating the inhibited proliferation of MSCs due to irradiation damage. Results of flow cytometry showed that cells in G2+ M phase(2.60±0.41, 4.20±1.27) and DNA content (58.40±0.79,61.17 ± 1.35) in irradiation groups after 3-day and 7-day irradiation were obviously lower than those of normal control group(12.60 ±0. 75, 78.57±0. 83)(P <0.05-0.01).

CONCLUSION:

MSCs have relatively high sensitivity to irradiation damage and longer persisting period.
Full text: Available Index: WPRIM (Western Pacific) Type of study: Controlled clinical trial Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2005 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Controlled clinical trial Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2005 Type: Article