Your browser doesn't support javascript.
loading
Effects of functional electrical stimulation on motor function and the expression of bromodeoxyuridine + and glial fibrillary acid protein+ cells in the subventricular zone after cerebral infarction / 中华物理医学与康复杂志
Article in Chinese | WPRIM | ID: wpr-419734
Responsible library: WPRO
ABSTRACT
Objective To investigate the effects of functional electrical stimulation (FES) on motor function and the expression of bromodeoxyuridine (Brdu) + and glial fibrillary acid protein (GFAP) + in the subventricular zone (SVZ) of rats with acute cerebral infarction,and to explore it's mechanism. Methods A rat model of cerebral infarction was established using Longa's technique for middle cerebral artery occlusion (MCAO) with an intraluminal filament.The rats were randomly divided into a FES group,a placebo stimulation group and a control group.In each group,rats were randomly allocated into 1 d,3 d,7 d and 14 d subgroups (6 rats/subgroup).Superficial electrodes were pasted on the paralyzed forelimbs of rats in the FES group for connecting with the FES instrument,and FES treatment was carried out with a current of 4-5 mA for 15 min on the third day after the MCAO operation to produce extension of the wrist and the digits of the paralyzed forelimb.The rats in the placebo stimulation group were pasted with electrodes,but no FES was administered and they received no other treatment.Neurological deficits were evaluated using the modified neurological severity score (mNSS) before treatment and on the 1 st,3rd,7th,and 14th day after treatment. BrdU and GFAP positive cells in the SVZ were detected by immunofluorescence techniques.Results After 7 or 14 days the motor function of rats in the FES group had improved significantly compared with the placebo stimulation and control groups.Compared with the other two groups,the expression levels of BrdU+ and GFAP+ cells in the ischemic SVZ in the FES group were significantly higher at the 3rd,7th and 14th day.Conclusion FES can improve motor function after acute cerebral infarction and also promote the proliferation and differentiation of neural stem cells in the SVZ.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Physical Medicine and Rehabilitation Year: 2012 Type: Article
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Physical Medicine and Rehabilitation Year: 2012 Type: Article