Your browser doesn't support javascript.
loading
Fabrication and properties of low-crystallinity carbonate apatite monolith bone graft / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 6067-6072, 2013.
Article in Chinese | WPRIM | ID: wpr-438177
ABSTRACT

BACKGROUND:

As a good candidate for bioresorbable bone graft, carbonate apatite monolith can be prepared by sintering procedure;however, sintering can cause carbonate loss and result in a much lower rate of biodegradation compared to the human bone, thereby influencing the formation of new bone.

OBJECTIVE:

To fabricate low-crystal inity carbonate apatite monolith as bone graft and test its properties.

METHODS:

Calcium carbonate monolith prepared by carbonation of Ca(OH) 2 monolith was treated in 1 mol/L RESULTS AND

CONCLUSION:

The calcium carbonate completely transformed into low-crystal inity B-type carbonate apatite after treated for 14 days. Diametral tensile strength of the final product was (10.27±1.08) MPa, which is adequate as a reconstruction material for bone defect. The carbonate content was (4.80±0.50)%, similar to that of the nature bone. The molar Ca/P was 1.63±0.01, indicating the Ca-deficient carbonate apatite is obtained. The present method al ows an easy fabrication of low-crystal inity B-type carbonate apatite block with adequate strength and without sintering process. ammonium dihydrogen phosphate solution at 60 ℃ up to 14 days. Diametral tensile strength was examined for biomechanical properties;X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscope observation and chemical analyses (carbonate, calcium and phosphate content) were also performed for physical and chemical properties.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2013 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2013 Type: Article