Your browser doesn't support javascript.
loading
Thymosin beta4 increases mouse hair regeneration / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 1687-1693, 2014.
Article in Chinese | WPRIM | ID: wpr-446421
ABSTRACT

BACKGROUND:

Results of recent studies demonstrated the modulation of thymosin β4 on hair cycle and regeneration, but the mechanism of action remains unclear.

OBJECTIVE:

To investigate the mechanism by which thymosinβ4 increases hair regeneration through Wnt signal pathway.

METHODS:

After the mouse model of depilation was established using rosin/paraffin mixed agents, the experimental animals were randomly assorted to three different groups, including low-dose, high-dose and control groups, and a dose of 0.3μg/50μL, 3μg/50μL thymosinβ4 and PBS was administered on the depilated backs every 12 hours, respectively. Then photography, hematoxylin-eosin staining, immunohistochemistry and in situ hybridization were applied to observe the growth of hair, and the expressions ofβ-catenin and LEF-1 mRNA in different groups at different time were quantitatively evaluated. RESULTS AND

CONCLUSION:

The hair growth of the low-dose group was faster than that of the other groups. Hematoxylin-eosin staining demonstrated inflammatory cel s infiltration in the dermis after depilation, and the number of hair fol icles that were in the phase of anagen was much more than the other groups as time went by. Immunohistochemistry ofβ-catenin showed the accumulation of intra-cel ularβ-catenin in the low-dose group at the bulge of fol icles assessed by integrated absorbance analysis (P<0.05), so did the in situ hybridization of LEF-1 mRNA. Low-dose thymosinβ4 accelerates hair growth through Wnt signal pathway by elevating the level ofβ-catenin and LEF-1 mRNA.

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2014 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Type of study: Prognostic study Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2014 Type: Article