Your browser doesn't support javascript.
loading
Ultrasonic controlling of degradation of polymer materials / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 4868-4872, 2014.
Article in Chinese | WPRIM | ID: wpr-453188
ABSTRACT

BACKGROUND:

Degradable polymer materials initiate the degradation process immediately after implantation. How to regulate the degradation of these materials is rarely reported at present.

OBJECTIVE:

To study the effect of ultrasonic wave on control ing the degradation of polymer materials.

METHODS:

The sample is made ofε-caprolactone/L-lactide copolymer, and its core was coated with low density polyethylene on the surface with the fol owing four different methods. (1) The core surface was firstly covered with CaCl 2 powder, and then coated with polyethylene. (2) The core was firstly coated with polyethylene and coarsened for 3 hours. (3) The core surface was firstly covered with CaCl 2 powder, and then coated with polyethylene, and coarsened for 3 hours. (4) The core was directly coated with polyethylene. The four kinds of specimens obtained were embedded in pork for ultrasonic bombardment experiment in vitro. RESULTS AND

CONCLUSION:

In the specimens prepared with methods 1 and 4, the lyophobic layer could protect core materials before ultrasonic treatment, and no absorption peak was found at 631 nm. After ultrasonic treatment, the lyophobic layer was destroyed, toluidine blue dye was released, leading to change the color of immersion solution and increase the absorption peak at 631 nm. In the specimens prepared with methods 2 and 3,the lyophobic layer cannot exhibit the protection effects, the absorption peak was found at 631 nm. Under electron microscope, the appearance of the specimens in four groups was changed obviously. It is feasible to control the starting of the degradation by coating the degradable copolymer with LDPE and using ultrasonic as a trigger.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2014 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2014 Type: Article