Your browser doesn't support javascript.
loading
A study of mRNA expressi on and transcription regulation in the promoter region of myeloperoxidase gene from a population living in the area with coal-burning endemic fluorosis in Guizhou Province / 中华地方病学杂志
Chinese Journal of Endemiology ; (12): 374-378, 2014.
Article in Chinese | WPRIM | ID: wpr-454149
ABSTRACT
Objective To explore the correlation between myeloperoxidase (MPO) genetic variation and coal-burning endemic fluorosis, and to understand the influence of integrated intervention including stove changes and health education on people’s health in the area. Methods In 2007, coal-burning endemic fluorosis disease areas were selected in Bijie City, Guizhou Province. No stove changes in Yachi Town, 150 patients with dental fluorosis were selected as fluorosis non-intervention group, and the intervention group was 150 patients in Changchun Town where the stoves were changed 2 years ago. The population in control group was selected in an area with non-endemic fluorosis in Changshun County. The mRNA expressions of MPO in leukoxytes were detected by real-time PCR. HepG2 cells were cultured in vitro and divided into four groups pGL3-A group, pGL3-G group, pGL3-Control group and pGL3-Basic group. pGL3-A and pGL3-G were recombinant plasmid, while pGL3-Basic as a blank control and pGL3-Control as a positive one. The internal reference plasmid pRL-TK co-transfected the HepG2 cells with pGL3-G, pGL3-A, pGL3-Basic and pGL3-Control, respectively. The influence of sudden change of MPO gene promoter on the gene transfection activity was evaluated by a dual luciferasereporter gene system. Results The expression level of MPO mRNA in peripheral blood leukocytes in non-intervention group(0.054 ± 0 . 003 ) were higher than control and intervention groups (0.019 ± 0.004,0.019 ± 0.003, all P0.05). After the MPO-463G/A locus genetic variation occured, the luciferase reporter gene expression level of the recombinant plasmid pGL3-G(0.753 4 ± 0.086 6) was higher than that of the pGL3-A(0.490 0 ± 0.022 3, P < 0.05). Conclusions The study on MPO gene promoter-463G/A locus has prompted that MPO gene allele may be a protective factor to coal-burning fluorosis. The integrated interventions have a role in the prevention and treatment of endemic fluorosis.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Endemiology Year: 2014 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Endemiology Year: 2014 Type: Article