Your browser doesn't support javascript.
loading
Effects of Whole Body Irradiation on Morphine, DAMGO, DPDPE, U50,488H and beta-endorphin-Induced Antinociception
International Journal of Oral Biology ; : 1-7, 2012.
Article in Korean | WPRIM | ID: wpr-45686
ABSTRACT
Opioid receptors have been pharmacologically classified as micro, delta, kappa and epsilon. We have recently reported that the antinociceptive effect of morphine (a micro-opioid receptor agonist), but not that of beta-endorphin (a novel micro/epsilon-opioid receptor agonist), is attenuated by whole body irradiation (WBI). It is unclear at present whether WBI has differential effects on the antinociceptive effects of micro-, delta-, kappa- and epsilon-opioid receptor agonists. In our current experiments, male ICR mice were exposed to WBI (5Gy) from a 60Co gamma-source and the antinociceptive effects of opioid receptor agonists were assessed two hours later using the hot water (52degrees C) tail-immersion test. Morphine and D-Ala2,N-Me-Phe4,Gly-olenkephalin(DAMGO), [D-Pen2-D-Pen5]enkephalin (DPDPE), trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U50,488H), and beta-endorphin were tested as agonists for micro, delta, kappa, and epsilon-opioid receptors, respectively. WBI significantly attenuated the antinociceptive effects of morphine and DAMGO, but increased those of beta-endorphin. The antinociceptive effects of DPDPE and U50,488H were not affected by WBI. In addition, to more preciously understand the differential effects of WBI on micro- and epsilon-opioid receptor agonists, we assessed pretreatment effects of beta-funaltrexamine (beta-FNA, a micro-opioid receptor antagonist) or beta-endorphin1-27 (beta-EP1-27, an epsilon-opioid receptor antagonist), and found that pretreatment with beta-FNA significantly attenuated the antinociceptive effects of morphine and beta-endorphin by WBI. beta-EP1-27 significantly reversed the attenuation of morphine by WBI and significantly attenuated the increased effects of beta-endorphin by WBI. The results demonstrate differential sensitivities of opioid receptors to WBI, especially for micro- and epsilon-opioid receptors.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Beta-Endorphin / Water / Whole-Body Irradiation / Receptors, Opioid / 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer / Enkephalin, Ala(2)-MePhe(4)-Gly(5)- / Enkephalin, D-Penicillamine (2,5)- / Mice, Inbred ICR / Morphine / Naltrexone Limits: Animals / Humans / Male Language: Korean Journal: International Journal of Oral Biology Year: 2012 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Beta-Endorphin / Water / Whole-Body Irradiation / Receptors, Opioid / 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer / Enkephalin, Ala(2)-MePhe(4)-Gly(5)- / Enkephalin, D-Penicillamine (2,5)- / Mice, Inbred ICR / Morphine / Naltrexone Limits: Animals / Humans / Male Language: Korean Journal: International Journal of Oral Biology Year: 2012 Type: Article