Your browser doesn't support javascript.
loading
Stress distribution in natural maxillary central incisor and implant: a three-dimensional finite element analysis / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 2545-2550, 2015.
Article in Chinese | WPRIM | ID: wpr-465274
ABSTRACT

BACKGROUND:

Biomechanical compatibility is the necessary condition to ensure the stable osseointegration with implants that then can function over a long period; therefore, it is especialy important to get knowledge about distribution of stress and strain between the maxilary central incisor and its surrounding bone tissue.

OBJECTIVE:

Based on five different anatomical types of natural teeth, to study the regularity of stress distribution between the maxilary central incisor root and implant.

METHODS:

According to the five different anatomical types of natural maxilary central incisors, UGNX and ANSYS were used to set up three-dimensional finite element models (B1, B2, M1, M2, P1) for the implant and surrounding structures, which were under 100 N static load at angles of 0o, 30o, 45o, 60o, 90o with the long axis of teeth. Then, the stress distribution between the five kinds of maxilary central incisor roots and implants was analyzed. RESULTS AND

CONCLUSION:

Among the five different anatomical types, the equivalent stress for both the natural central incisor and implant were increased with the increasing of angles, and the implant had a higher raising trend. The equivalent stress for the natural tooth concentrated upon B1 for the maximum value and M1 for the minimum value; while the equivalent stress for the implant focused on the maximum value at M1 and the minimum value at M2. There was a gap of 2%-31% between the equivalent stresses for the natural tooth roots and a gap of 4%-21% for the implants. The stress distribution range for the implant was just smaler than that for the natural tooth roots. It implies that the bit force of implant and natural tooth is in positive proportion to the bite angles, and the bite force that implant can burden is smaler than that the central incisor can.
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2015 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2015 Type: Article