Your browser doesn't support javascript.
loading
Biocompatibility of vancomycin/hydroxyapatite/titanium nanotubes / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 3097-3103, 2016.
Article in Chinese | WPRIM | ID: wpr-489984
ABSTRACT

BACKGROUND:

In order to overcome the shortcomings of single materials, antibiotics-loaded hydroxyapatite/titanium composites have attracted people’s attentions.

OBJECTIVE:

To evaluate the biocompatibility of vancomycin/hydroxyapatite/titanium nanotubes.

METHODS:

Mouse osteoblasts, MC-3T3-E1, were co-cultured with titanium (Cp-T), TiO2nanotubes, and vancomycin/hydroxyapatite/titanium nanotubes, respectively. Cel morphology and growth were observed after 1, 3 and 5 days of co-culture under inverted microscope and scanning electron microscope. The cel proliferation was detected by AO-EB method. The total protein, calcium and alkaline phosphatase levels were detected at 7 and 14 days of co-culture. RESULTSAND

CONCLUSION:

The MC-3T3-E1 cels with good viability and morphology adhered wel on the surface of vancomycin/hydroxyapatite/titanium nanotubes compared with those on the surface of pure titanium and TiO2nanotubes under the scanning electron miscroscope. Moreover, there were a large amount of pseudopodia on the surface of composite nanotubes. Compared with the other two groups, the cel number on the surface and the levels of intracelular calcium and alkaline phosphatase were al higher in the vancomycin/hydroxyapatite/titanium nanotubes group. These findings suggest that the vancomycin/hydroxyapatite/titanium nanotubes have good biocompatibility and no cytotoxicity.
Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2016 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Tissue Engineering Research Year: 2016 Type: Article